首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   136篇
  免费   5篇
化学   86篇
晶体学   2篇
力学   1篇
数学   15篇
物理学   37篇
  2023年   2篇
  2021年   2篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2017年   7篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   10篇
  2012年   10篇
  2011年   8篇
  2010年   2篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   4篇
  2002年   4篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1982年   3篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有141条查询结果,搜索用时 15 毫秒
1.
3,3′,5,5′‐Tetrakis(2‐chloro‐2‐propyl)biphenyl (biphenyl tetracumyl chloride, BPTCC) and 1,3‐bis[3,5‐bis(2‐chloro‐2‐propyl)phenoxy]propane (diphenoxypropane tetracumyl chloride, DPPTCC) were synthesized as initiators for quasiliving cationic polymerization of isobutylene (IB). In the synthesis of BPTCC, tetrafunctionality was achieved via the coupling of dimethyl 5‐bromoisophthalate (DMBI) using nickel dibromide bis(triphenylphosphine) and zinc in the presence of a base; in the synthesis of DPPTCC, two equivalents of dimethyl 5‐hydroxyisophthalate were linked via reaction with 1,3‐dibromopropane in the presence of potassium carbonate. Both initiators were used to initiate the polymerization of IB under quasiliving cationic polymerization conditions. PIB initiated from BPTCC revealed a chain end/molecule value (as determined by 1H‐NMR) of 3.85, verifying the nearly exclusive production of 4‐arm polyisobutylene (PIB). GPC analysis revealed a narrow peak representing the target four‐arm PIB, with a slight shoulder at high elution volumes (low molecular weights). GPC analysis of the PIB initiated by DPPTCC revealed multimodal distributions, suggesting the formation of two‐, three‐, and four‐arm star polymers during the polymerization. This behavior was attributed to Friedel–Crafts alkylation of the initiator core after the addition of one IB unit, which was activated by the electron‐donating oxytrimethyleneoxy linking moiety. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5942–5953, 2004  相似文献   
2.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   
3.
4.
Amyloglucosidase was immobilized onto granular chicken bone (BIOBONE?) by noncovalent interactions. The amount of activity bound relative to an equal amount of free enzyme was 13.6 ?0.4%. The estimated specific activity for amyloglucosidase decreased from 75.3?0.8 to 43.5 ?9.6 U/mg protein upon immobilization. TheKm value of the bone-immobilized enzyme using glycogen as substrate increased from 3.04?0.38 mg/mL (free) to 9.04? 1.51 mg/mL (immobilized), butKm showed no change upon immobilization when starches were used as substrates. A decrease in Vmax values occurred upon enzyme immobilization for all substrates, but this largely reflected the percentage of enzyme initially bound to the bone. Immobilization also improved enzyme stability in the presence of various additives (e.g., detergent, KC1, and ethanol) or under low or high pH reaction conditions. Bound amyloglucosidase maintained high activity (>90%) following five cycles of continuous use at moderate (23 ?C) and high (55?C) temperatures. Data derived from Lineweaver-Burk and Arrhenius plots indicated that substrate and product diffusion limitation were minimal.  相似文献   
5.
β-Glucosidase was covalently immobilized alone and coimmobilized with cellulase using a hydrophilic polyurethane foam (Hypol®FHP 2002). Immobilization improved the functional properties of the enzymes. When immobilized alone, the Km for cellobiose of β-glucosidase was decreased by 33% and the pH optimum shifted to a slightly more basic value, compared to the free enzyme. Immobilized β-glucosidase was extremely stable (95% of activity remained after 1000 h of continuous use). Coimmobilization of cellulase and β-glucosidase produced a cellulose-hydrolyzing complex with a 2.5-fold greater rate of glucose production for soluble cellulose and a four-fold greater increase for insoluble cellulose, compared to immobilized cellulase alone. The immobilized enzymes showed a broader acceptance of various types of insoluble cellulose substrates than did the free enzymes and showed a long-term (at least 24 h) linear rate of glucose production from microcrystalline cellulose. The pH optimum for the coimmobilized enzymes was 6.0. This method for enzyme immobilization is fast, irreversible, and does not require harsh conditions. The enhanced glucose yields obtained indicate that this method may prove useful for commercial cellulose hydrolysis.  相似文献   
6.
7.
A simple liquid chromatographic (LC) method is presented for the determination of diminazene (DZ) in raw bovine milk. DZ is extracted from raw milk by chilled aqueous centrifugation and is isolated from milk components on a cyano solid-phase extraction column. DZ is eluted by using a methanol-ion pairing reagent. A Phenomenex LUNA CN column and an acetonitrile-buffered mobile phase with a counter ion are used for gradient LC. The LC effluent is monitored at a detection wavelength of 372 nm by using a deuterium lamp. Under the parameters described, the retention time of DZ is 8-10 min with a peak area response of 6.5 mAU/ng. The method demonstrated excellent precision over all levels tested (25-400 ppb) with an overall average recovery of 90.4 +/- 14.5%. The method is applicable to the monitoring of milk for DZ residues at the 25 ppb level with a limit of quantitation of 10 ppb.  相似文献   
8.
Initiation of ceric ion-induced grafting from poly(vinyl alcohol) (PVOH) was studied by examining the formation and lifetime of colored complexes between ceriumIV and (1) a commercial PVOH, (2) a diol-free PVOH, and (3) several model 1,2-diols. UV/visible spectroscopy was employed using a wavelength of 520 nm. Results showed that the 1,2-diols, which are an inherent defect in PVOH, are the sites most reactive toward ceric ion. The observed rate constant for the reaction was found to increase with decreasing [CeIV] until the maximum rate was reached at which time reaction took place exclusively with 1,2-diols. The activation energy for oxidation of commercial PVOH at the maximum rate was 15.4 kcal/mol while that for diol-free PVOH was 22.4 kcal/mol. The 1,2-diols of PVOH displayed a high equilibrium constant for complexation with ceric ion, compared to the model 2,3-butanediol. It was suggested that the PVOH chain segments bring about crowding of the diol group, and this leads to a higher equilibrium constant for complexation. The lowest energy conformation of a PVOH chain segment containing a 1,2-diol linkage was calculated using the CHEMLAB-II molecular design program, and the 1,2-diol was predicted to be at the center of a sharp bend in the chain brought about by its presence.  相似文献   
9.
Cellulase was covalently immobilized using a hydrophilic polyurethane foam (Hypol®FHP 2002). Compared to the free enzyme, immobilized cellulase showed a dramatic decrease (7.5-fold) in the Michaelis constant for carboxymethylcellulose. The immobilized enzyme also had a broader and more basic pH optimum (pH 5.5–6.0), a greater stability under heat-denaturing or liquid nitrogen-freezing conditions, and was relatively more efficient in utilizing insoluble cellulose substrates. High molecular weight compounds (Blue Dextran) could move throughout the foam matrix, indicating permeability to insoluble celluloses; activity could be further improved 2.4-fold after powdering, foams under liquid nitrogen. The improved kinetic and stability features of the immobilized cellulase combined with advantageous properties of the polyurethane foam (resistance to enzymatic degradation, plasticity of shape and size) suggest that this mechanism of cellulase immobilization has high potential for application in the industrial degradation of celluloses.  相似文献   
10.
Bioabsorbable poly(ester-urethane) networks were synthesized from ethyl 2,6-diisocyanatohexanoate (L -lysine diisocyanate) (LDI) and a series of polyester triols. LDI was synthesized by refluxing L-lysine monohydrochloride with ethanol to form the ester, which was subsequently refluxed with 1,1,1,3,3,3-hexamethyldisilazane to yield a silazane-protected intermediate. This product was then phosgenated using triphosgene. Polyester triols were synthesized from D,L-lactide, ?-caprolactone, or comonomer mixtures thereof, using glycerol as initiator and stannous octoate as catalyst. Polyurethane networks were cured using [NCO]/[OH] = 1.05 and stannous octoate (0.05 wt %) for 24 h at room temperature and pressure and 24 h at 50°C and 0.1 mm Hg. LDI-based polyurethane networks were totally amorphous and possessed very low sol contents. Networks based on poly (D,L-lactide) triols were rigid (Tg ∽ 60°C) with ultimate tensile strengths of ~ 40–70 MPa, tensile moduli of ~ 1.2–2.0 GPa, and ultimate elongations of ~ 4–10%. Networks based on ?-caprolactone triols were low-modulus elastomers with tensile strengths and moduli of ~ 1–4 MPa and ~ 3–6 GPa, respectively, and ultimate elongations of ~ 50–300%. Networks based on copolymers displayed physical properties consistent with monomer composition and were tougher than the networks based on the homopolymers. Tensile strengths for the copolymers were ~ 3–25 MPa with ultimate elongations up to 600%. Hydrolytic degradation under simulated physiological conditions showed that D ,L -lactide homopolymer networks were the most resistant to degradation, undergoing virtually no change in mass or physical properties for 60 days. ?-Caprolactone-based networks were resistant to degradation for 40 days, and high-lactide copolymer-based networks suffered substantial losses in physical properties after only 3 days. © 1994 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号