首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8512篇
  免费   323篇
  国内免费   34篇
化学   6071篇
晶体学   73篇
力学   217篇
数学   1235篇
物理学   1273篇
  2023年   61篇
  2022年   71篇
  2021年   252篇
  2020年   208篇
  2019年   207篇
  2018年   149篇
  2017年   143篇
  2016年   331篇
  2015年   275篇
  2014年   284篇
  2013年   443篇
  2012年   567篇
  2011年   696篇
  2010年   376篇
  2009年   325篇
  2008年   552篇
  2007年   524篇
  2006年   522篇
  2005年   453篇
  2004年   420篇
  2003年   335篇
  2002年   298篇
  2001年   104篇
  2000年   91篇
  1999年   92篇
  1998年   61篇
  1997年   69篇
  1996年   101篇
  1995年   72篇
  1994年   69篇
  1993年   59篇
  1992年   66篇
  1991年   52篇
  1990年   37篇
  1989年   37篇
  1988年   23篇
  1987年   27篇
  1986年   28篇
  1985年   31篇
  1984年   39篇
  1983年   35篇
  1982年   27篇
  1981年   25篇
  1980年   26篇
  1979年   33篇
  1978年   21篇
  1977年   24篇
  1976年   22篇
  1975年   13篇
  1974年   13篇
排序方式: 共有8869条查询结果,搜索用时 31 毫秒
1.
Monomeric sarcosine oxidase (mSOx) fusion with the silaffin peptide, R5, designed previously for easy protein production in low resource areas, was used in a biosilification process to form an enzyme layer electrode biosensor. mSOx is a low activity enzyme (10–20 U/mg) requiring high amounts of enzyme to obtain an amperometric biosensor signal, in the clinically useful range <1 mM sarcosine, especially since the Km is >10 mM. An amperometric biosensor model was fitted to experimental data to investigate dynamic range. mSOx constructs were designed with 6H (6×histidine) and R5 (silaffin) peptide tags and compared with native mSOx. Glutaraldehyde (GA) cross‐linked proteins retained ~5 % activity for mSOx and mSOx‐6H and only 0.5 % for mSOx‐R5. In contrast R5 catalysed biosilification on (3‐mercaptopropyl) trimethoxysilane (MPTMS) and tetramethyl orthosilicate (TMOS) particles created a ‘self‐immobilisation’ matrix retaining 40 % and 76 % activity respectively. The TMOS matrix produced a thick layer (>500 μm) on a glassy carbon electrode with a mediated current due to sarcosine in the clinical range for sarcosinemia (0–1 mM). The mSOx‐R5 fusion protein was also used to catalyse biosilification in the presence of creatinase and creatininase, entrapping all three enzymes. A mediated GC enzyme linked current was obtained with dynamic range available for creatinine determination of 0.1–2 mM for an enzyme layer ~800 nm.  相似文献   
2.
The development of biodegradable materials for tailored applications, particularly in the field of polymeric films and sheets, is a challenging technological goal as well as a contribution to help protect the environment. Poly(lactic) acid (PLA) is a promising substitute for several oil-based polymers; however, to overcome its thermal and mechanical drawbacks, researchers have developed solutions such as blending PLA with polybutylene adipate terephthalate (PBAT), which is capable of increasing the ductility of the final material. In this study, PLA/PBAT binary blends, with minimum possible content of nonrenewable materials, were examined from processing, thermal, morphological, and rheological perspective. An optimized PLA/PBAT ratio was chosen as the polymeric basis to obtain a biodegradable formulation by adding a biobased plasticizer and appropriate fillers to produce a micrometer film with tailored flexibility and tear resistance. The processing technology involved flat-die extrusion, followed by calendering. The tearing resistance of the produced film was investigated, and the results were compared with literature data. A study on the essential work of fracture was implemented to explore the mode III out-of-plane fracture resistance starting from a trouser tear test.  相似文献   
3.
We consider the problem of estimating a large rank-one tensor u k ∈ (n)k , k ≥ 3 , in Gaussian noise. Earlier work characterized a critical signal-to-noise ratio λ  Bayes = O(1) above which an ideal estimator achieves strictly positive correlation with the unknown vector of interest. Remarkably, no polynomial-time algorithm is known that achieved this goal unless λCn(k − 2)/4 , and even powerful semidefinite programming relaxations appear to fail for 1 ≪ λn(k − 2)/4 . In order to elucidate this behavior, we consider the maximum likelihood estimator, which requires maximizing a degree-k homogeneous polynomial over the unit sphere in n dimensions. We compute the expected number of critical points and local maxima of this objective function and show that it is exponential in the dimensions n , and give exact formulas for the exponential growth rate. We show that (for λ larger than a constant) critical points are either very close to the unknown vector u or are confined in a band of width Θ(λ−1/(k − 1)) around the maximum circle that is orthogonal to u . For local maxima, this band shrinks to be of size Θ(λ−1/(k − 2)) . These “uninformative” local maxima are likely to cause the failure of optimization algorithms. © 2019 Wiley Periodicals, Inc.  相似文献   
4.
5.
6.
In this note we show that the chain space belonging to a quadric can be embedded into the chain geometry over a Clifford algebra via a generalized stereographic projection.  相似文献   
7.
Thirteen fifth graders were given an assignment to invent their own numeration systems, following a unit on bases and a look at early events in the history of numbers. The task presented options that required the students to make decisions (such as whether to use a base, which base to use, design of symbols, etc.), and build a rationale for the elements of their system. Analyses of patterns embedded in their invented systems provided an assessment of student understanding of numeration. The progression of more and less complex thinking related to the student's choice of a base other than 10, consistency of logic throughout the system in words and symbols, rationale for change, and perception of real life examples that would change if the system was adopted. The invention task is presented as another way to make connections.  相似文献   
8.
Dual fractional cutting plane algorithms, in which cutting planes are used to iteratively tighten a linear relaxation of an integer program, are well-known and form the basis of the highly successful branch-and-cut method. It is rather less well-known that various primal cutting plane algorithms were developed in the 1960s, for example by Young. In a primal algorithm, the main role of the cutting planes is to enable a feasible solution to the original problem to be improved. Research on these algorithms has been almost non-existent.  In this paper we argue for a re-examination of these primal methods. We describe a new primal algorithm for pure 0-1 problems based on strong valid inequalities and give some encouraging computational results. Possible extensions to the case of general mixed-integer programs are also discussed.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号