首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Landscape of the Spiked Tensor Model
Authors:Gérard Ben Arous  Song Mei  Andrea Montanari  Mihai Nica
Institution:1. Courant Institute, 251 Mercer St, New York, NY, 10012 USA;2. Stanford University, 475 Via Ortega, Stanford, CA, 94305 USA;3. Stanford University, 350, Serra Mall, Stanford, CA, 94305 USA;4. University of Toronto, 40 St. George St. Toronto, ON, Canada
Abstract:We consider the problem of estimating a large rank-one tensor u k ∈ (n)k , k ≥ 3 , in Gaussian noise. Earlier work characterized a critical signal-to-noise ratio λ  Bayes = O(1) above which an ideal estimator achieves strictly positive correlation with the unknown vector of interest. Remarkably, no polynomial-time algorithm is known that achieved this goal unless λCn(k − 2)/4 , and even powerful semidefinite programming relaxations appear to fail for 1 ≪ λn(k − 2)/4 . In order to elucidate this behavior, we consider the maximum likelihood estimator, which requires maximizing a degree-k homogeneous polynomial over the unit sphere in n dimensions. We compute the expected number of critical points and local maxima of this objective function and show that it is exponential in the dimensions n , and give exact formulas for the exponential growth rate. We show that (for λ larger than a constant) critical points are either very close to the unknown vector u or are confined in a band of width Θ(λ−1/(k − 1)) around the maximum circle that is orthogonal to u . For local maxima, this band shrinks to be of size Θ(λ−1/(k − 2)) . These “uninformative” local maxima are likely to cause the failure of optimization algorithms. © 2019 Wiley Periodicals, Inc.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号