首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   7篇
  国内免费   5篇
化学   65篇
力学   11篇
数学   16篇
物理学   17篇
  2023年   2篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   10篇
  2018年   8篇
  2017年   9篇
  2016年   8篇
  2015年   3篇
  2014年   9篇
  2013年   7篇
  2012年   8篇
  2011年   8篇
  2010年   10篇
  2009年   4篇
  2005年   4篇
  2002年   1篇
  1999年   1篇
  1996年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1970年   1篇
排序方式: 共有109条查询结果,搜索用时 15 毫秒
1.
2.
Nanocomposite membranes based on polyelectrolyte complex (PEC) of chitosan/phosphotungstic acid (PWA) and different types of montmorillonite (MMT) were prepared as alternative membranes to Nafion for direct methanol fuel cell (DMFC) applications. Fourier transform infrared spectroscopy (FTIR) revealed an electrostatically fixed PWA within the PEC membranes, which avoids a decrease in proton conductivity at practical condition. Various amounts of pristine as well as organically modified MMT (OMMT) (MMT: Cloisite Na, OMMT: Cloisite 15A, and Cloisite 30B) were introduced to the PEC membranes to decrease in methanol permeability and, thus, enhance efficiency and power density of the cells. X-ray diffraction patterns of the nanocomposite membranes proved that MMT (or OMMT) layers were exfoliated in the membranes at loading weights of lower than 3 wt.%. Moreover, the proton conductivity and the methanol permeability as well as the water uptake behavior of the manufactured nanocomposite membranes were studied. According to the selectivity parameter, ratio of proton conductivity to methanol permeability, the PEC/2 wt.% MMT 30B was identified as the optimum composition. The DMFC performance tests were carried out at 70 °C and 5 M methanol feed and the optimum membrane showed higher maximum power density as well as acceptable durability compared to Nafion 117. The obtained results indicated that owing to the relatively high selectivity and power density, the optimum nanocomposite membrane could be considered as a promising polyelectrolyte membrane (PEM) for DMFC applications.  相似文献   
3.
4.
5.
6.
Urban rail planning is extremely complex, mainly because it is a decision problem under different uncertainties. In practice, travel demand is generally uncertain, and therefore, the timetabling decisions must be based on accurate estimation. This research addresses the optimization of train timetable at public transit terminals of an urban rail in a stochastic setting. To cope with stochastic fluctuation of arrival rates, a two‐stage stochastic programming model is developed. The objective is to construct a daily train schedule that minimizes the expected waiting time of passengers. Due to the high computational cost of evaluating the expected value objective, the sample average approximation method is applied. The method provided statistical estimations of the optimality gap as well as lower and upper bounds and the associated confidence intervals. Numerical experiments are performed to evaluate the performance of the proposed model and the solution method.  相似文献   
7.
A well‐known result on pathwise uniqueness of the solution of stochastic differential equations in is the Yamada‐Watanabe theorem. We have extended this result by replacing the Lipschitz assumption on the drift coefficient by much weaker assumption of semi‐monotonicity.  相似文献   
8.
Nonlinear kernel methods have been widely used to deal with nonlinear problems in latent variable methods. However, in the presence of structured noise, these methods have reduced efficacy. We have previously introduced constrained latent variable methods that make use of any available additional knowledge about the structured noise. These methods improve performance by introducing additional constraints into the algorithm. In this paper, we build upon our previous work and introduce hard‐constrained and soft‐constrained nonlinear partial least squares methods using nonlinear kernels. The addition of nonlinear kernels reduces the effects of structured noise in nonlinear spaces and improves the regression performance between the input and response variables. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
9.
The assembly of sterically stabilized colloids at liquid-liquid interfaces is studied with the self-consistent field (SCF) theory using the discretization scheme that was developed by Scheutjens, Fleer, and co-workers. The model is based on a poly(methyl methacrylate) (pMMA) particle with poly(isobutylene) (pIB) grafted to the surface. The stabilizing groups on the particle surface have a significant effect on the interfacial assembly and, therefore, also on the formation and properties of Pickering emulsions. The wetting behavior of the particle is altered by the presence of the stabilizing groups, which affects the equilibrium position of the particles at the interface. The stabilizing groups can also lead to an activation barrier before interfacial adsorption, analogous to the steric repulsion between two particles. These effects are numerically solved with the SCF theory. It is commonly known that flocculating conditions enhance the interfacial adsorption and yield stable Pickering emulsions, which is confirmed in this work. Additionally, it is concluded that those conditions are not an absolute requirement. There is a window of stabilizer concentrations Γ(pIB), 2.2-3.3 mg/m(2) pIB, that shows both partial wetting and colloidal stability. The activation barrier for interfacial assembly is 140-550 k(B)T and is an order of magnitude higher than the colloidal stability. The difference can be attributed to the unfavorable interaction of pIB with water and a difference in geometry (plate-sphere vs sphere-sphere). This study demonstrates the interplay and provides a quantitative comparison between the wetting behavior and the colloidal stability, and it gives a better understanding of the colloidal assembly at soft interfaces and formation of Pickering emulsions in general.  相似文献   
10.
For the first time iridium oxide (IrO2) nanotubes are synthesized by electrodeposition in a polycarbonate (PC) template. Potential cycling (90 cycles) between 0.0 and 0.9 V is used for the preparation of IrOx nanotubes onto the PC template with a pore diameter of 100 nm. Field‐emission scanning electron microscopy (FESEM) images show, that IrO2 nanotubes with uniform diameters of 110±10 nm and an estimated length of 1–3 µm are formed. The electrochemical properties and the electrocatalytic activity of a glassy carbon‐IrOx nanotube modified electrode toward Cr3+ and As3+ oxidation are investigated. Finally, the modified electrode is used for micromolar detection of the proposed analytes using differential pulse voltammetry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号