首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   3篇
  国内免费   1篇
化学   1篇
晶体学   3篇
物理学   1篇
  2013年   2篇
  2012年   2篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
以经典热力学第二定律ΔG<0为依据,分析了静态高温高压触媒法合成立方氮化硼(cBN)过程中发生的可能反应.考虑温度和压强对反应物相体积的影响,计算了六方氮化硼(Li3N-hBN)体系中hBN+Li3N→Li3BN2,h BN→cBN及Li3BN2→Li3N+cBN反应在高温高压条件下的ΔG.结果证实,Li3BN2由Li3N与hBN在高温高压(T>1300 K,P>3.0 GPa)条件下反应得到,在cBN的合成(T=1600~1800 K,P=4.6~6.0 GPa)条件下,hBN和Li3BN2都有向cBN转化的倾向,但由hBN向cBN直接转变的反应自由能比Li3BN2分解生成cBN的反应自由能更负,反应的可能性更大.探讨了高温高压条件下立方氮化硼的转变机理。  相似文献   
2.
石墨向金刚石在超高压高温下的转变机理经过了数十年的探讨,至今未形成定论.本文根据固体和分子经验电子理论(EET理论),分别计算了静压超高压高温条件下立方合成立方金刚石过程中石墨和金刚石的价电子结构,获得了石墨和金刚石12组不同组合晶面间的价电子密度.结果表明,在超高压高温下其电子密度差均大于10;,说明石墨/金刚石晶面的价电子结构差异太大,不能诱发石墨向立方金刚石的直接转变.分析认为:超高压高温下,石墨先分解出一亚稳相后再转变成立方金刚石结构.  相似文献   
3.
 利用热力学中经典的ΔG<0判定法,探讨了Fe基触媒合成金刚石晶体生长中的碳源问题,在计算中考虑了各物相的体积随温度和压力的变化。结果表明:在金刚石形成之前,就有大量Fe3C形成,而在触媒法合成金刚石的温度和压力范围内,Fe3C→C(金刚石)+3γ-Fe反应自由能和石墨→金刚石相变自由能均为负值,但前者比后者的绝对值更大,这说明前者更容易发生。因此,从热力学角度看,Fe3C的形成降低了石墨转变为金刚石所要越过的势垒,使用Fe基触媒合成金刚石单晶的生长来源于Fe3C的分解而不是石墨的直接转化。同时推导出在1200 K以上石墨-金刚石的平衡p-T关系:peq(GPa)=1.036+0.00236T (K),与F.P.Bundy的平衡线非常接近,证明了本热力学计算方法的可行性。  相似文献   
4.
采用Li3N和hBN为原料,在静态高温高压条件下合成出大颗粒cBN单晶.利用扫描电镜(SEM)、高分辨透射电镜(HRTEM)对合成块断面、大颗粒cBN单晶形貌及其周围物相进行了表征.结果表明:在大颗粒cBN单晶周围主要存在hBN、cBN及Li3BN2等物相.HRTEM在大颗粒单晶周围发现了纳米尺寸的cBN微颗粒,并发现该微颗粒处在Li3BN2物相包裹中.由此可以推测,高温高压状态下,hBN与Li3N发生共熔反应生成Li3BN2,而Li3BN2作为触媒中间相促使cBN的形成.同时结合SEM结果分析表明,一旦cBN微颗粒形成,在随后的生长过程中,cBN在Li3BN2熔体中以扩散的方式进行台阶生长,从而形成宏观可见的cBN单晶.  相似文献   
5.
静态高温高压触媒法是工业生产立方氮化硼单晶的主要方法,其中触媒的选择至关重要。研究触媒与cBN的相关性对于探索立方氮化硼的合成机理,改进合成工艺,获得性能优良的氮化硼晶体有重要的意义。本文以工业生产中常用的锂、镁、钙基触媒立方氮化硼合成为主,阐述了触媒在立方氮化硼合成中的作用及近年来立方氮化硼的合成机理研究进展,并在此基础上提出了今后的研究方向。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号