首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   9篇
物理学   1篇
  2020年   1篇
  2018年   2篇
  2015年   2篇
  2014年   1篇
  2009年   1篇
  2007年   1篇
  2006年   2篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The reaction between phenyl phosphonic dichloride (C6H5P(O)Cl2) and synthetic calcium hydroxy- and fluorapatite has been investigated. The presence of mono- or polymeric (C6H5PO) fragment bound to hydroxyapatite was evidenced by IR, and solid-state 31P NMR spectroscopy. X-ray powder analysis has shown that the apatitic structure remains unchanged during the reaction. In contrast, no reaction was found using fluorapatite. According to the results found for these two different apatites a mechanism was proposed for the formation of covalent P-O-P bonds as the result of a reaction between the C6H5P(O)Cl2 organic reagent and (HPO4) and/or OH ions of the hydroxyapatite.  相似文献   
2.
The sorption mechanism of Ru3+ ions on hydroxy (HAp), carbonate (CO3HAp), and fluor apatites (FAp) has been studied in detail. Ru apatites were obtained by reaction of the apatites with RuCl3 in aqueous solution. The structure and composition of the ruthenium-modified apatites were studied by several techniques: elemental analysis, XRD, EXAFS, IR, NMR, SEM-EDS, TEM, and thermal analysis. The amount of Ru in the modified apatite varies from 7.8 to 10.5 wt% and is not related to the initial composition or the specific surface area of the apatite. The different characterization techniques show that in the Ru-modified apatites Ru is surrounded by six oxygen atoms and do not contain any chlorine. For Ru-HAp and Ru-CO3HAp the new phase is amorphous whereas it is crystalline for FAp. The catalytic oxidation ability is higher for Ru-HAp and Ru-CO3HAp compared to Ru-FAp apatite in the oxidation of benzylic alcohol.  相似文献   
3.
Journal of Thermal Analysis and Calorimetry - We investigated various possible chemical interactions between individual precursor compounds (ZnSe, SnSe, and CuSe) and CdI2 as a flux material used...  相似文献   
4.
The present study deals with chemical reactions and enthalpies during the synthesis of Cu2ZnSnSe4 (CZTSe) from CuSe, SnSe, and ZnSe in molten NaI as flux material in closed degassed ampoules. Differential thermal analysis (DTA) at heating rates 5 °C min?1 and cooling rates 10 °C min?1 were used for the determination of temperatures of phase transitions and/or chemical reactions. XRD and Raman analyses confirmed that the formation of CZTSe starts already at 380 °C after the melting of Se that deliberates from the transformation of CuSe to Cu1.8Se, and the CZTSe formation process impedes to a great extent due to the presence of solid NaI. After the melting of NaI, the formation of CZTSe is completed. For the determination of enthalpy values, the calibration with pure NaI was performed. The thermal effects and enthalpies were compared with the available known thermodynamical values. The specific enthalpy of exothermic Cu2ZnSnSe4 formation at 661 °C in NaI ?36 ± 3 kJ mol?1 was determined experimentally for the first time. Ternary compound Na2SnSe3 was formed during the synthesis process. NaI·2H2O, if present in NaI, was found to be a critical issue in the synthesis process of CZTSe monograin powders in molten NaI—it gave rise to the formation of oxygen-containing by-products Na2SeO4 and Na2Cu(OH)4. The complete dehydration of NaI·2H2O at T ≤ 70 °C in vacuum is necessary to avoid the formation of oxygen-containing compounds.  相似文献   
5.
Journal of Thermal Analysis and Calorimetry - Thermal behaviour of shelly Estonian phosphorite ores from Iru, Toolse, Ülgase deposits and their concentrates have been studied. The...  相似文献   
6.
7.
This paper deals with the formation of Cu2ZnSnSe4 (CZTS) in the process of selenization of metal precursor layers in elemental selenium vapour. Metallic precursors were sequentially evaported from Sn, Zn and Cu sources. Precursor Sn–Zn–Cu films have a “mesa-like” structure and consist mainly of Cu5Zn8 and Cu6Sn5 phases. It was confirmed that the formation of different binary copper selenides is the dominating process of selenization in elemental Se vapour at temperatures up to 300 °C. The formation of kesterite CZTS films begins at 300 °C and dominates at higher temperatures, always resulting in multiphase films that consist of high-quality Cu2ZnSnSe4 crystals and of a separate phase of ZnSe.  相似文献   
8.
We have investigated the influence of Ca-substitution and different rare earths on the microstructure of RE1-x CaxBa2Cu3O7-δ (RE= Y, Eu, Er; x=0, 0.2, 0.3) superconducting ceramics. Scanning electron microscopy, X-ray microanalysis and energy dispersive spectroscopy have been used to study the microstructure and the chemical composition of the samples. A correlation was established between the polycrystalline microstructure and phase formation depending on the additive content. We observed that calcium is distributed uniformly in the crystals. The formation of minor impurity phases improved the sintering conditions.  相似文献   
9.
10.

The thermal decomposition of cotton and hemp fibers was studied after mild alkaline treatments with tetramethyl-, tetraethyl- and tetrabutylammonium hydroxides with the goal of modeling the chemical activation during carbonization of cellulosic fibers. The thermal decomposition was studied by thermogravimetry/mass spectrometry and pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS). The treated samples decomposed in two temperature ranges during heating in the thermobalance. At lower temperature, tetraalkylammonium hydroxides (TAAH) ionically bonded to the cellulose molecules were decomposed; moreover, the alkaline agents initiated the partial decomposition of cellulose. Those fiber segments, which were not accessible for TAAH, decomposed at similar temperatures as the original cotton and hemp samples. It is known that quaternary ammonium hydroxides swell the cellulosic fibers; however, the results of this study proved that there was a chemical interaction between the alkaline swelling agents and cotton or hemp fibers at rather low temperatures (200–300 °C). The evolved products indicated that the alkaline chemicals reacted with the cellulose molecules and alkylated compounds were formed. This observation was confirmed by thermochemolysis experiments carried out by Py–GC/MS using tetramethylammonium hydroxide reagent. The thermochemolysis experiments under mild conditions resulted in the methylation of the glucoside units and levoglucosan, and no peeling reactions of the sugar units were observed as during strong alkaline conditions described in the literature.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号