首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   22篇
物理学   3篇
  2021年   1篇
  2019年   3篇
  2014年   1篇
  2013年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   2篇
  2006年   1篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  1990年   1篇
  1981年   1篇
排序方式: 共有25条查询结果,搜索用时 17 毫秒
1.
One of the most spectacular yet unsolved problems for the ICN -band photodissociation is the non-statistical spin-rotation F1 = N + 1/2 and F2 = N − 1/2 populations for each rotation level N of the CN fragment. The F1/F2 population difference function f(N) exhibits strong N and λ dependences with an oscillatory behavior. Such details were found to critically depend on the number of open-channel product states, namely, whether both I (2P3/2) and I (2P1/2) are energetically available or not as the dissociation partner. First, in the asymptotic region, the exchange and dipole-quadrupole inter-fragment interactions were studied in detail. Then, as the diabatic basis, we took the appropriate symmetry adapted products of the electronic and rotational wavefunctions for the F1 and F2 levels at the dissociation limits. We found that the adiabatic Hamiltonian exhibits Rosen–Zener–Demkov type nonadiabatic transitions reflecting the switch between the exchange interaction and the small but finite spin-rotation interaction within CN at the asymptotic region. This non-crossing type nonadiabatic transition occurs with the probability 1/2, that is, at the diabatic limit through a sudden switch of the quantization axis for CN spin S from the dissociation axis to the CN rotation axis N . We have derived semiclassical formulae for f(N) and the orientation parameters with a two-state model including the 3A′ and 4A′ electronic states, and with a four-state model including the 3A′ through 6A′ electronic states. These two kinds of interfering models explain general features of the F1 and F2 level populations observed by Zare's group and Hall's group, respectively. © 2018 Wiley Periodicals, Inc.  相似文献   
2.
We synthesized biobased poly(2,5‐furandimethylene succinate‐co‐butylene succinate) [P(FS‐co‐BS)] copolymers by polycondensation of 2,5‐bis(hydroxymethyl)furan, 1,4‐butanediol, and succinic acid. These copolymers could be crosslinked to form network polymers by means of a reversible Diels–Alder reaction with bis‐maleimide. The thermal properties, mechanical properties, and healing abilities of the P(FS‐co‐BS)s and the network polymers were investigated. The mechanical properties of the network polymers depended on the comonomer composition of the P(FS‐co‐BS)s and the maleimide/furan ratio in the network polymers. Some of the copolymers exhibited healing ability at room temperature, and their healing efficiency was enhanced by solvent or heat. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 216–222  相似文献   
3.
A series of low-spin, six-coordinate complexes [Fe(TBzTArP)L(2)]X (1) and [Fe(TBuTArP)L(2)]X (2) (X = Cl(-), BF(4)(-), or Bu(4)N(+)), where the axial ligands (L) are HIm, 1-MeIm, DMAP, 4-MeOPy, 4-MePy, Py, and CN(-), were prepared. The electronic structures of these complexes were examined by (1)H NMR and electron paramagnetic resonance (EPR) spectroscopy as well as density functional theory (DFT) calculations. In spite of the fact that almost all of the bis(HIm), bis(1-MeIm), and bis(DMAP) complexes reported previously (including 2) adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, the corresponding complexes of 1 show the (d(xz), d(yz))(4)(d(xy))(1) ground state at ambient temperature. At lower temperature, the electronic ground state of the HIm, 1-MeIm, and DMAP complexes of 1 changes to the common (d(xy))(2)(d(xz), d(yz))(3) ground state. All of the other complexes of 1 and 2 carrying 4-MeOPy, 4-MePy, Py, and CN(-) maintain the (d(xz), d(yz))(4)(d(xy))(1) ground state in the NMR temperature range, i.e., 298-173 K. The EPR spectra taken at 4.2 K are fully consistent with the NMR results because the HIm and 1-MeIm complexes of 1 and 2 adopt the (d(xy))(2)(d(xz), d(yz))(3) ground state, as revealed by the rhombic-type spectra. The DMAP complex of 1 exists as a mixture of two electron-configurational isomers. All of the other complexes adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state, as revealed by the axial-type spectra. Among the complexes adopting the (d(xz), d(yz))(4)(d(xy))(1) ground state, the energy gap between the d(xy) and d(π) orbitals in 1 is always larger than that of the corresponding complex of 2. Thus, it is clear that the benzoannelation of the porphyrin ring stabilizes the (d(xz), d(yz))(4)(d(xy))(1) ground state. The DFT calculation of the bis(Py) complex of analogous iron(III) porphyrinate, [Fe(TPTBzP)(Py)(2)](+), suggests that the (d(xz), d(yz))(4)(d(xy))(1) state is more stable than the (d(xy))(2)(d(xz), d(yz))(3) state in both ruffled and saddled conformations. The lowest-energy states in the two conformers are so close in energy that their ordering is reversed depending on the calculation methods applied. On the basis of the spectroscopic and theoretical results, we concluded that 1, having 4-MeOPy, 4-MePy, and Py as axial ligands, exists as an equilibrium mixture of saddled and ruffled isomers both of which adopt the (d(xz), d(yz))(4)(d(xy))(1) ground state. The stability of the (d(xz), d(yz))(4)(d(xy))(1) ground state is ascribed to the strong bonding interaction between the iron d(xy) and porphyrin a(1u) orbitals in the saddled conformer caused by the high energy of the a(1u) highest occupied molecular orbital in TBzTArP. Similarly, a bonding interaction occurs between the d(xy) and a(2u) orbitals in the ruffled conformer. In addition, the bonding interaction of the d(π) orbitals with the low-lying lowest unoccupied molecular orbital, which is an inherent characteristic of TBzTArP, can also contribute to stabilization of the (d(xz), d(yz))(4)(d(xy))(1) ground state.  相似文献   
4.
A series of low-spin six-coordinate (tetraphenylchlorinato)iron(III) complexes [Fe(TPC)(L)2]+/- (L = 1-MeIm, CN-, 4-CNPy, and (t)BuNC) have been prepared, and their (13)C NMR spectra have been examined to reveal the electronic structure. These complexes exist as the mixture of the two isomers with the (d(xy))2(d(xz), d(yz))3 and (d(xz), d(yz))4(d(xy))1 ground states. Contribution of the (d(xz), d(yz))4(d(xy))1 isomer has increased as the axial ligand changes from 1-MeIm, to CN(-) (in CD2Cl2 solution), CN- (in CD(3)OD solution), and 4-CNPy, and then to tBuNC as revealed by the meso and pyrroline carbon chemical shifts; the meso carbon signals at 146 and -19 ppm in [Fe(TPC)(1-MeIm)2]+ shifted to 763 and 700 ppm in [Fe(TPC)(tBuNC)2]+. In the case of the CN- complex, the population of the (d(xz), d(yz))4(d(xy))1 isomer has increased to a great extent when the solvent is changed from CD2Cl2 to CD3OD. The result is ascribed to the stabilization of the d(xz) and d(yz) orbitals of iron(III) caused by the hydrogen bonding between methanol and the coordinated cyanide ligand. Comparison of the 13C NMR data of the TPC complexes with those of the TPP, OEP, and OEC complexes has revealed that the populations of the (d(xz), d(yz))4(d(xy))1 isomer in TPC complexes are much larger than those in the corresponding TPP, OEC, and OEP complexes carrying the same axial ligands.  相似文献   
5.
6.
1H and 13C NMR chemical shifts of iron porphyrin complexes are determined mainly by the spin densities at the peripheral carbon and nitrogen atoms caused by the interaction between paramagnetic iron 3d and porphyrin molecular orbitals. This review describes how the half‐occupied iron 3d orbitals such as dπ(dxz, dyz), dxy, d, and d‐ interact with a specific porphyrin molecular orbital and affect the 1H and 13C NMR chemical shifts in planar, ruffled, saddled, and domed complexes. Revealing the relationship between the orbital interactions and NMR chemical shifts is quite important to determine the fine electronic structures of synthetic iron porphyrin complexes as well as naturally occurring heme proteins.  相似文献   
7.
Addition of tert-butylisocyanide (tBuNC) to a CD2Cl2 solution of the bis(perchlorato)(meso-tetramesitylporphyrinato) iron(III) cation radical leads to the formation of the corresponding bis(adduct), [Fe(TMP)(tBuNC)2]2+, whose electronic structure is in sharp contrast to that of the corresponding imidazole(HIm) complex, [Fe(TMP)(HIm)2]2+; the former adopts the S = 0 while the latter exhibits the S = 1 electronic ground state.  相似文献   
8.
The electronic structures of six-coordinate iron(III) octaethylmonoazaporphyrins, [Fe(MAzP)L 2] (+/-) ( 1), have been examined by means of (1)H NMR and EPR spectroscopy to reveal the effect of meso-nitrogen in the porphyrin ring. The complexes carrying axial ligands with strong field strengths such as 1-MeIm, DMAP, CN (-), and (t)BuNC adopt the low-spin state with the (d xy ) (2)(d xz , d yz ) (3) ground state in a wide temperature range where the (1)H NMR and EPR spectra are taken. In contrast, the complexes with much weaker axial ligands, such as 4-CNPy and 3,5-Cl 2Py, exhibit the spin transition from the mainly S = 3/2 at 298 K to the S = 1/2 with the (d xy ) (2)(d xz , d yz ) (3) ground state at 4 K. Only the THF complex has maintained the S = 3/2 throughout the temperature range examined. Thus, the electronic structures of 1 resemble those of the corresponding iron(III) octaethylporphyrins, [Fe(OEP)L 2] (+/-) ( 2). A couple of differences have been observed, however, in the electronic structures of 1 and 2. One of the differences is the electronic ground state in low-spin bis( (t)BuNC) complexes. While [Fe(OEP)( (t)BuNC) 2] (+) adopts the (d xz , d yz ) (4)(d xy ) (1) ground state, like most of the bis( (t)BuNC) complexes reported previously, [Fe(MAzP)( (t)BuNC) 2] (+) has shown the (d xy ) (2)(d xz , d yz ) (3) ground state. Another difference is the spin state of the bis(3,5-Cl 2Py) complexes. While [Fe(OEP)(3,5-Cl 2Py) 2] (+) has maintained the mixed S = 3/2 and 5/2 spin state from 298 to 4 K, [Fe(MAzP)(3,5-Cl 2Py) 2] (+) has shown the spin transition mentioned above. These differences have been ascribed to the narrower N4 cavity and the presence of lower-lying pi* orbital in MAzP as compared with OEP.  相似文献   
9.
C-Mannosylation is a post-translational modification of proteins in the endoplasmic reticulum. Monomeric α-mannose is attached to specific Trp residues at the first Trp in the Trp-x-x-Trp/Cys (W-x-x-W/C) motif of substrate proteins, by the action of C-mannosyltransferases, DPY19-related gene products. The acceptor substrate proteins are included in the thrombospondin type I repeat (TSR) superfamily, cytokine receptor type I family, and others. Previous studies demonstrated that C-mannosylation plays critical roles in the folding, sorting, and/or secretion of substrate proteins. A C-mannosylation-defective gene mutation was identified in humans as the disease-associated variant affecting a C-mannosylation motif of W-x-x-W of ADAMTSL1, which suggests the involvement of defects in protein C-mannosylation in human diseases such as developmental glaucoma, myopia, and/or retinal defects. On the other hand, monomeric C-mannosyl Trp (C-Man-Trp), a deduced degradation product of C-mannosylated proteins, occurs in cells and extracellular fluids. Several studies showed that the level of C-Man-Trp is upregulated in blood of patients with renal dysfunction, suggesting that the metabolism of C-Man-Trp may be involved in human kidney diseases. Together, protein C-mannosylation is considered to play important roles in the biosynthesis and functions of substrate proteins, and the altered regulation of protein C-manosylation may be involved in the pathophysiology of human diseases. In this review, we consider the biochemical and biomedical knowledge of protein C-mannosylation and C-Man-Trp, and introduce recent studies concerning their significance in biology and medicine.  相似文献   
10.
A concise synthesis of the 2,4-dimethyldeuteroporphyrin regiospecifically labeled with 13C at the α-meso site was developed. The starting material of ethyl 3,4,5-trimethylpyrrole-2-carboxylate was first converted to a 13C-labeled 5,5′-dimethyldipyrromethene with 13C formic acid, and the resulting dipyrromethene was coupled with 5,5′-dibromodipyrromethene to afford the 13C-labeled porphyrin in 26% yield. The paramagnetic 13C NMR measurements of myoglobin with the inversion-recovery method allowed us to detect selectively the α-meso-carbon signal of the iron complex. The heme is symmetric about the α,γ-meso carbon axis to prevent the orientational disorder in protein pocket. These results indicate that the 13C-enriched 2,4-dimethyldeuteroporphyrin is a new promising tool to elucidate the structure-function relationship of many hemoproteins.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号