首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, mechanism of the O2(1Δg) generation from the reaction of the dissolved Cl2 with H2O2 in basic aqueous solution has been explored by the combined ab initio calculation and nonadiabatic dynamics simulation, together with different solvent models. Three possible pathways have been determined for the O2(1Δg) generation, but two of them are sequentially downhill processes until formation of the OOCl complex with water, which are of high exothermic character. Once the complex is formed, singlet molecular oxygen is easily generated by its decomposition along the singlet-state pathway. However, triplet molecular oxygen of O2() can be produced with considerable probability through nonadiabatic intersystem crossing in the 1Δg/ intersection region. It has been found that the coupled solvent, heavy-atom, and nonadiabatic effects have an important influence on the quantum yield of the O2(1Δg) generation. © 2018 Wiley Periodicals, Inc.  相似文献   

2.
In this work, we investigated the nonlinear optical (NLO) properties of excess electron electride molecules of M[Cu(Ag)@(NH3)n](M = Be, Mg and Ca; n = 1–3) using density functional theory (DFT). This electride molecules consist of an alkaline-earth (Be, Mg and Ca) together with transition metal (Cu and Ag) doped in NH3 cluster. The natural population analysis of charge and their highest occupied molecular orbital suggests that the M[Cu(Ag)@(NH3)n] compound has excess electron like alkaline-earth metal form double cage electrides molecules, which exhibit a large static first hyperpolarizability () (electron contribution part) and one of which owns a peak value of 216,938 (a.u.) for Be[Ag@(NH3)2] and vibrational harmonic first hyperpolarizability () (nuclear contribution part) values and the ratio of /, namely, η values from 0.02 for Be[Ag@(NH3)] to 0.757 for Mg[Ag@(NH3)3]. The electron density contribution in different regions on values mainly come from alkaline-earth and transition metal atoms by first hyperpolarizability density analysis, and also explains the reason why values are positive and negative. Moreover, the frequency-dependent values β(−2ω,ω,ω) are also estimated to make a comparison with experimental measures. © 2018 Wiley Periodicals, Inc.  相似文献   

3.
We have computationally studied the bimolecular nucleophilic substitution (SN2) reactions of MnNH2(n−1) + CH3Cl (M+ = Li+, Na+, K+, and MgCl+; n = 0, 1) in the gas phase and in tetrahydrofuran solution at OLYP/6-31++G(d,p) using polarizable continuum model implicit solvation. We wish to explore and understand the effect of the metal counterion M+ and of solvation on the reaction profile and the stereochemical preference, that is, backside (SN2-b) versus frontside attack (SN2-f). The results were compared to the corresponding ion-pair SN2 reactions involving F and OH nucleophiles. Our analyses with an extended activation strain model of chemical reactivity uncover and explain various trends in SN2 reactivity along the nucleophiles F, OH, and , including solvent and counterion effects. © 2019 Wiley Periodicals, Inc.  相似文献   

4.
The infrared (IR) and Raman spectra of eight substitutional carbon defects in silicon are computed at the quantum mechanical level by using a periodic supercell approach based on hybrid functionals, an all electron Gaussian type basis set and the CRYSTAL code. The single substitutional C s case and its combination with a vacancy (C sV and C sSiV) are considered first. The progressive saturation of the four bonds of a Si atom with C is then examined. The last set of defects consists of a chain of adjacent carbon atoms C, with i = 1–3. The simple substitutional case, C s, is the common first member of the three sets. All these defects show important, very characteristic features in their IR spectrum. One or two C related peaks dominate the spectra: at 596 cm−1 for C s (and C sSiV, the second neighbor vacancy is not shifting the C s peak), at 705 and 716 cm−1 for C sV, at 537 cm−1 for C and C (with additional peaks at 522, 655 and 689 for the latter only), at 607 and 624 cm−1, 601 and 643 cm−1, and 629 cm−1 for SiC, SiC, and SiC, respectively. Comparison with experiment allows to attribute many observed peaks to one of the C substitutional defects. Observed peaks above 720 cm−1 must be attributed to interstitial C or more complicated defects.  相似文献   

5.
Detailed molecular orbital and bonding analyses reveal the existence of both fluxional σ- and π-bonds in the global minima Cs ( 1 ) and Cs MB18 ( 3 ) and transition states Cs ( 2 ) and Cs ( 4 ) of dianion and monoanions (M = K, Rb, and Cs). It is the fluxional bonds that facilitate the fluxional behaviors of the quasi-planar and half-sandwich which possess energy barriers smaller than the difference of the corresponding zero-point corrections. © 2019 Wiley Periodicals, Inc.  相似文献   

6.
Accurate structure and potential energy surface of germylene, GeH2, in its ground electronic state 1A1 were determined from ab initio calculations using the coupled-cluster approach in conjunction with the correlation-consistent basis sets up to sextuple-zeta quality. The Born-Oppenheimer equilibrium structural parameters for the 1A1 state are estimated to be re(GeH) = 1.5793 Å and e(HGeH) = 91.19. The term value Te for the lowest excited electronic state ã3B1 of GeH2 is predicted to be 9140 cm–1. The vibration-rotation energy levels for the 1A1 state of the 74GeH2, 74GeD2, 72GeH2, and 70GeH2 isotopologues were determined using a variational approach and compared with the experimental data. The role of the core-electron correlation, higher-order valence-electron correlation, scalar relativistic, spin-orbit, and adiabatic effects for prediction of the structure and vibration-rotation dynamics of the GeH2 molecule is discussed. © 2019 Wiley Periodicals, Inc.  相似文献   

7.
Treatment of N,N′‐bis(aryl)formamidines (ArFormH), N,N′‐bis(2,6‐difluorophenyl)formamidine (DFFormH) or N,N′‐bis(2,6‐diisopropylphenyl)formamidine (DippFormH), with europium metal in CH3CN is an efficient synthesis of the divalent complexes: [{Eu(DFForm)2(CH3CN)2}2] ( Eu1 ) or [Eu(DippForm)2(CH3CN)4] ( Eu2 ). The synthetic method was extended to ytterbium, but the metal required activation by addition of Hg0. With DFFormH in CH3CN, [{Yb(DFForm)2(CH3CN)}2] ( Yb1 ) was obtained in good yield, and [Yb(DFForm)2(thf)3] ( Yb3 ) was obtained from a synthesis in CH3CN/THF. Thus, this synthetic method completely circumvents the use of either salt metathesis, or redox transmetallation/protolysis (RTP) protocols to prepare divalent rare‐earth formamidinates. Heating Yb1 in PhMe/C6D6 resulted in decomposition to trivalent products, including one from a CH3CN activation process. For a synthetic comparison, divalent ytterbium DFForm and DippForm complexes were synthesised by RTP reactions between Yb0, Hg(R)2 (R=Ph, C6F5), and ArFormH in THF, leading to the isolation of either [Yb(DFForm)2(thf)3] ( Yb3 ), or the first five coordinate rare‐earth formamidinate complex [Yb(DippForm)2(thf)] ( Yb4 b ), and, from adjustment of the stoichiometry, trivalent [Yb(DFForm)3(thf)] ( Yb6 ). Oxidation of Yb3 with benzophenone (bp), or halogenating agents (TiCl4(thf)2, Ph3CCl, C2Cl6) gave [Yb(DFForm)3(bp)] or [Yb(DFForm)2Cl(thf)2], respectively. Furthermore, the structural chemistry of divalent ArForm complexes has been substantially broadened. Not only have the highest and lowest coordination numbers for divalent rare‐earth ArForm complexes been achieved in Eu2 and Yb4 b , respectively, but also dimeric Eu1 and Yb1 have highly unusual ArForm bridging coordination modes, either perpendicular μ‐1κ(N:N′):2κ(N:N′) in Eu1 , or the twisted μ‐1κ(N:N′):2κ(N′:F′) DFForm coordination in Yb1 , both unprecedented in divalent rare‐earth ArForm chemistry and in the wider divalent rare‐earth amidinate field.  相似文献   

8.
Quantum chemical calculations on model copper paddlewheel (CPW) complexes of general formula [Cu2(μ2-O2CR)4L2] establish two local coordination geometries at the metal centers depending on the balance between equatorial and axial ligand fields. When the equatorial field is stronger than the axial field (large ligand field asymmetry), dominates the stereochemical activity of the d9 shell resulting in a relatively rigid, “orbitally directed” planar or square pyramidal structure. However, if the axial field is significantly increased, or the equatorial field moderately weakened, a small ligand field asymmetry results and both and are involved in the stereochemical activity. This results in a “plastic,” distorted trigonal bipyramidal geometry where the former axial ligand moves into one of the original four equatorial positions. Linkers already used to synthesize zinc-dabco MOFs (dabco = 1,4-diazabicyclo[2.2.2]octane) are shown to generate plastic CPW secondary building unit analogs with potential implications for conferring breathing behavior for MOFs which would currently be assumed to be rigid. © 2019 Wiley Periodicals, Inc.  相似文献   

9.
Anionic species of aspartic acid, Asp, having a zwitterionic backbone and a deprotonated side chain, appears to be a good example for analyzing dipole-ion and ion pair interactions. Density functional theory calculations were herein performed to investigate the low energy conformers of Asp embedded in a dielectric continuum modeling an aqueous environment, through a scan of the potential energy as a function of the side chain (χ1, χ2) torsion angles. The most energetically favorable conformers having g+g and gg+ side chain orientations are found to be stabilized by charge-enhanced intramolecular H-bonding involving the positively charged () and the two negatively charged (COO) groups. These conformers were further used to analyze Asp + nW clusters (W: water, n = 1 or 3), and Asp/Asp pair formation. COO groups were found to be the most attractive sites for hosting a water molecule (binding energy: −6.0 ± 1.5 kcal/mol), compared to groups (binding energy: −4.7 ± 1.1 kcal/mol). Energy separation between g+g and gg+ conformers increases upon explicit hydration. Asp/Asp ion pairs, stabilized by the interaction between the group of a partner and the COO group of the other, shows a quite constant binding energy (−8.1 ± 0.2 kcal/mol), whatever the pair type, and the relative orientation of the two interacting partners. This study suggests a first step to achieve a more realistic image of intermolecular interactions in aqueous environment, especially upon increasing concentration. It can also be considered as a preliminary attempt to assess the interactions of the Lys+…Asp/Glu ion pairs stabilizing intra- and interchain interactions in proteins.  相似文献   

10.
11.
Trifluoromethylation of acetonitrile with 3,3‐dimethyl‐1‐(trifluoromethyl)?1λ3,2‐ benziodoxol is assumed to occur via reductive elimination (RE) of the electrophilic CF3‐ligand and MeCN bound to the hypervalent iodine. Computations in gas phase showed that the reaction might also occur via an SN2 mechanism. There is a substantial solvent effect present for both reaction mechanisms, and their energies of activation are very sensitive toward the solvent model used (implicit, microsolvation, and cluster‐continuum). With polarizable continuum model‐based methods, the SN2 mechanism becomes less favorable. Applying the cluster‐continuum model, using a shell of solvent molecules derived from ab initio molecular dynamics (AIMD) simulations, the gap between the two activation barriers ( ) is lowered to a few kcal mol?1 and also shows that the activation entropies ( ) and volumes ( ) for the two mechanisms differ substantially. A quantitative assessment of will therefore only be possible using AIMD. A natural bond orbital‐analysis gives further insight into the activation of the CF3‐reagent by protonation. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
13.
Two pressure-induced phase transitions have been theoretically studied in the layered iron phosphorus triselenide (FePSe3 ). Topological analysis of chemical bonding in FePSe3 has been performed based on the results of first-principles calculations within the periodic linear combination of atomic orbitals (LCAO) method with hybrid Hartree-Fock-DFT B3LYP functional. The first transition at about 6 GPa is accompanied by the symmetry change from to C2/m , whereas the semiconductor-to-metal transition (SMT) occurs at about 13 GPa leading to the symmetry change from C2/m to . We found that the collapse of the band gap at about 13 GPa occurs due to changes in the electronic structure of FePSe3 induced by relative displacements of phosphorus or selenium atoms along the c-axis direction under pressure. The results of the topological analysis of the electron density and its Laplacian demonstrate that the pressure changes not only the interatomic distances but also the bond nature between the intralayer and interlayer phosphorus atoms. The interlayer P–P interactions are absent in two non-metallic FePSe3 phases while after SMT the intralayer P–P interactions weaken and the interlayer P–P interactions appear.  相似文献   

14.
Cocrystallization of the dithiadiazolyl (DTDA) radicals p-XC6F4CNSSN (X=F, Cl, Br, I, CN) with TEMPO afforded the 2 : 1 cocrystals [p-XC6F4CNSSN]2[TEMPO] ( 1 – 5 ) whose structures all reflect a common S4⋅⋅⋅O supramolecular motif. The nature of this interaction was probed by DFT calculations (M06/aug-cc-pVDZ) on 1 which revealed that the enthalpy of formation of the [C6F5CNSSN]2[TEMPO] supramolecular motif from [C6F5CNSSN]2 and TEMPO is substantial (−54.0 kJ mol−1). Electronic structure calculations revealed a TEMPO-based doublet S= configuration as the ground state with limited spin density on the DTDA rings (2.4 %). The corresponding spin quartet state is +78.9 kJ mol−1 higher in energy. An atoms-in-molecules analysis reveals four bond critical points (BCPs) between the TEMPO O and the DTDA S atoms as well as additional BCPs between selected DTDA S atoms and methyl H atoms of the TEMPO molecule. Herein, the structures of 2 – 5 are considered within the context of a hierarchical view of competing and complementary intermolecular interactions; in particular, the established supramolecular CN⋅⋅⋅S−S synthon is sacrificed in order to form the new S4⋅⋅⋅O interaction.  相似文献   

15.
2‐Amino‐4‐fluoro‐2‐methylpent‐4‐enoic acid, obtained as a 1 : 1 salt with trifluoro‐acetic acid, was characterized by 1H and 19F high‐resolution NMR spectroscopy. High‐precision potentiometry led to the dissociation constants pK = 1.879 and pK = 9.054. The first automated 470.59 MHz 19F NMR‐controlled titration yielded the dynamic chemical shift 〈δF〉 as a function of pcH or τ and the ion‐specific chemical shifts: δF(H2L+) = ?94.81 ppm, δF(HL) = ?94.21 ppm, δF(L?) = ?92.45 ppm. The deprotonation gradients were found to be Δ1 = ?0.60 ppm and Δ2 = ?1.76 ppm. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
The accurate potential energy and electric dipole moment functions of borane, BH, in its electronic state have been determined from ab initio calculations using the multireference averaged coupled‐pair functional method in conjunction with the correlation‐consistent core‐valence basis sets up to septuple‐zeta quality. The higher‐order electron correlation, scalar relativistic, adiabatic, and nonadiabatic effects were discussed. Vibration‐rotation energy levels of the 11BH, 11BD, 10BH, and 10BD isotopologues were predicted to near “spectroscopic” accuracy. For the main isotopologue 11BH, the adiabatic dissociation energy D0 and the effective equilibrium internuclear distance re were predicted to be 28 469 ± 10 cm?1 and 1.23214 ± 0.0001 Å, respectively. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Addition of C2F4 to a flowing nitrogen afterglow gives rise to CN(E2ΣA2Π, X2Σ), CN(F2 ΔA2Π) and C (156.1, 165.5 and 193.0 nm) chemiluminescence. Transitions have been observed from CN(E2Σ) up to ν′ = 2 from which vibrational constants for this state have been recalculated to be ωeχe = 13.8 cm?1 and ωe = 1698.4 cm?1. Ground state and metasrable C(3P, 1D) have been detected and studied via resonance fluorescence. Addition of O2 to the N/C2F4 reaction system reduces C and CN emission intensities and [C] while giving rise to CO(a3Π-X1Σ), CO(A1ΠX1Σ) and NO(B2ΠX2Π) emission. Probable excitation mechanisms are discussed.  相似文献   

18.
The spin-forbidden dissociation reaction of the N2O(X1Σ+) ground state has been investigated by both quantum calculations and experiments. Ab initio prediction at the CCSD(T)/CBS(TQ5)//CCSD(T)/aug-cc-pVTZ+d level of theory gave the crossing point (MSX) energy at 60.1 kcal/mol for the N2O(X1Σ+) → N2() + O(3P) transition, in good agreement with published data. The T- and P-dependent rate coefficients, k1(T,P), for the nonadiabatic thermal dissociation predicted by nonadiabatic Rice-Ramsperger-Kassel-Marcus (RRKM) calculations agree very well with literature data. The rate constants at the high- and low-pressure limits, k1 = 1011.90 exp (−61.54 kcal mol−1/RT) s−1 and k1o = 1014.97 exp(−60.05 kcal mol−1/RT) cm3 mol−1 s−1, for example, agree closely with the extrapolated results of Röhrig et al. at both pressure limits. The second-order rate constant (k1o) is also in excellent agreement with our result measured by FTIR spectrometry in the present study for the temperature range of 860-1023 K as well as with many existing high-temperature data obtained primarily by shock-wave heating up to 3340 K. Kinetic modeling of the NO product yields measured at long reaction times in the present work also allowed us to reliably estimate the rate constant for reaction (3), O + N2O → N2 + O2, based on its strong competition with the NO formation from reaction (2) which has been better established. The modeled values of k3 confirmed the previous finding by Davidson et al. with significantly smaller values of A-factor and activation energy than the accepted ones. A least-squares analysis of both sets of data gave k3 = 1012.22 ± 0.04 exp[− (11.65 ± 0.24 kcal mol−1/RT)] cm3 mol−1 s−1, covering the wide temperature range of 988-3340 K.  相似文献   

19.
Tris(pentafluorophenyl)borane, B(C6F5)3 reacts with triethylaluminum, AlEt3 to a mixture of Al(C6F5)3−nEtn and Al2(C6F5)6−nEtn compounds depending on the B/Al ratio. From excess borane to excess AlEt3 the species Al(C6F5)3 → Al(C6F5)2Et Al2(C6F5)4Et2 → Al2(C6F5)3Et3 → Al2(C6F5)2Et4 → Al2(C6F5)Et5 are formed and differentiated by their para-F signal in 19F NMR. The reaction between B(C6F5)3 and the higher aluminum alkyls, tri(iso-butyl)aluminum and tri(n-hexyl)aluminum AlR3 (R = i-Bu, n-C6H13) is slower and requires AlR3 excess to shift the C6F5 R exchange equilibria to almost complete formation of Al(C6F5)R2 and BR3. At equimolar ratio the equilibrium lies on the side of the unchanged borane together with its boranate [B(C6F5)3R] anion. For tri(n-octyl)aluminum even at large Al(n-C8H17)3 excess no C6F5 alkyl exchange can be observed, but boranate anions form.  相似文献   

20.
Acetonitrile and the potent oxidative fluorinating agent XeF6 react at ?40 °C in Freon‐114 to form the highly energetic, shock‐sensitive compounds F6XeNCCH3 ( 1 ) and F6Xe(NCCH3)2?CH3CN ( 2 ?CH3CN). Their low‐temperature single‐crystal X‐ray structures show that the adducted XeF6 molecules of these compounds are the most isolated XeF6 moieties thus far encountered in the solid state and also provide the first examples of XeVI? N bonds. The geometry of the XeF6 moiety in 1 is nearly identical to the calculated distorted octahedral (C3v) geometry of gas‐phase XeF6. The C2v geometry of the XeF6 moiety in 2 resembles the transition state proposed to account for the fluxionality of gas‐phase XeF6. The energy‐minimized gas‐phase geometries and vibrational frequencies were calculated for 1 and 2 , and their respective binding energies with CH3CN were determined. The Raman spectra of 1 and 2 ?CH3CN were assigned by comparison with their calculated vibrational frequencies and intensities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号