首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   25篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2012年   3篇
  2011年   4篇
  2010年   3篇
  2009年   2篇
  2008年   3篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   2篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
1.
The three highest hydrolysis-capacity-value isolates of Bacillus subtilis (A 002, M 015, and F 018) obtained from Thai higher termites, Microcerotermes sp., under different isolation conditions (aerobic, anaerobic, and anaerobic/aerobic) were tested for cellulase activities—FPase, endoglucanase, and β-glucosidase—at 37 °C and pH 7.2 for 24 h. Their tolerance to an ionic liquid, 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), was also investigated. The results showed that the isolate M 015 provided the highest endoglucanase activity whereas the highest FPase and β-glucosidase activities were observed for the isolate F 018. The isolate F 018 also showed the highest tolerance to [BMIM]Cl in the range of 0.1–1.0 vol.%. In contrast, the isolate A 002 exhibited growth retardation in the presence of 0.5–1.0 vol.% [BMIM]Cl.  相似文献   
2.
In this paper, the epoxidation of ethylene over different catalysts—namely Ag/(low-surface-area, LSA)α-Al2O3, Ag/(high-surface-area, HSA)γ-Al2O3, and Au–Ag/(HSA)γ-Al2O3—in a low-temperature corona discharge system was investigated. In a comparison among the studied catalysts, the Ag/(LSA)α-Al2O3 catalyst was found to offer the highest selectivity for ethylene oxide, as well as the lowest selectivity for carbon dioxide and carbon monoxide. The selectivity for ethylene oxide increased with increasing applied voltage, while the selectivity for ethylene oxide remained unchanged when the frequency was varied in the range of 300–500 Hz. Nevertheless, the selectivity for ethylene oxide decreased with increasing frequency beyond 500 Hz. The optimum Ag loading on (LSA)α-Al2O3 was found to be 12.5 wt.%, at which a maximum ethylene oxide selectivity of 12.9% was obtained at the optimum applied voltage and input frequency of 15 kV and 500 Hz, respectively. Under these optimum conditions, the power consumption was found to be 12.6 × 10?16 W s/molecule of ethylene oxide produced. In addition, a low oxygen-to-ethylene molar ratio and a low feed flow rate were also experimentally found to be beneficial for the ethylene epoxidation.  相似文献   
3.
The aim of this research work was to evaluate the possibility of upgrading the simulated biogas (70?% CH4 and 30?% CO2) for hydrogen-rich syngas production using a multi-stage AC gliding arc system. The results showed that increasing stage number of plasma reactors, applied voltage and electrode gap distance enhanced both CH4 and CO2 conversions, in contrast with the increases in feed flow rate and input frequency. The gaseous products were mainly H2 and CO, with small amounts of C2H2, C2H4 and C2H6. The optimum conditions for hydrogen-rich syngas production using the four-stage AC gliding arc system were a feed flow rate of 150?cm3/min, an input frequency of 300?Hz, an applied voltage of 17?kV and an electrode gap distance of 6?mm. At the minimum power consumption (3.3?×?10?18?W?s/molecule of biogas converted and 2.8?×?10?18?W?s/molecule of syngas produced), CH4 and CO2 conversions were 21.5 and 5.7?%, respectively, H2 and CO selectivities were 57.1 and 14.9?%, respectively, and H2/CO (hydrogen-rich syngas) was 6.9. The combination of the plasma reforming and partial oxidation provided remarkable improvements to the overall process performance, especially in terms of reducing both the power consumption and the carbon formation on the electrode surface but the produced syngas had a much lower H2/CO ratio, depending on the oxygen/methane feed molar ratio. The best feed molar ratio of O2-to-CH4 ratio was found to be 0.3/1, providing the CH4 conversion of 81.4?%, CO2 conversion of 49.3?%, O2 conversion of 92.4?%, H2 selectivity of 49.5?%, CO selectivity of 49.96?%, and H2/CO of 1.6.  相似文献   
4.
The objective of the present work was to study the reforming of simulated natural gas via the nonthermal plasma process with the focus on the production of hydrogen and higher hydrocarbons. The reforming of simulated natural gas was conducted in an alternating current (AC) gliding arc reactor under ambient conditions. The feed composition of the simulated natural gas contained a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20. To investigate the effects of all gaseous hydrocarbons and CO2 present in the natural gas, the plasma reactor was operated with different feed compositions: pure CH4, CH4/He, CH4/C2H6/He, CH4/C2H6/C3H8/He and CH4/C2H6/C3H8/CO2. The results showed that the addition of gas components to the feed strongly influenced the reaction performance and the plasma stability. In comparisons among all the studied feed systems, both hydrogen and C2 hydrocarbon yields were found to depend on the feed gas composition in the following order: CH4/C2H6/C3H8/CO2 > CH4/C2H6/C3H8/He > CH4/C2H6/He > CH4/He > CH4. The maximum yields of hydrogen and C2 products of approximately 35% and 42%, respectively, were achieved in the CH4/C2H6/C3H8/CO2 feed system. In terms of energy consumption for producing hydrogen, the feed system of the CH4/C2H6/C3H8/CO2 mixture required the lowest input energy, in the range of 3.58 × 10−18–4.14 × 10−18 W s (22.35–25.82 eV) per molecule of produced hydrogen.  相似文献   
5.
In this research, the reforming of simulated natural gas containing a high CO2 content under AC non-thermal gliding arc discharge with partial oxidation was conducted at ambient temperature and atmospheric pressure, with specific regards to the concept of the direct utilization of natural gas. This work aimed at investigating the effects of applied voltage and input frequency, as well as the effect of adding oxygen on the reaction performance and discharge stability in the reforming of the simulated natural gas having a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20. The results showed marked increases in both CH4 conversion and product yield with increasing applied voltage and decreasing input frequency. The selectivities for H2, C2H6, C2H4, C4H10, and CO were observed to be enhanced at a higher applied voltage and at a lower frequency, whereas the selectivity for C2H2 showed an opposite trend. The use of oxygen was found to provide a great enhancement of the plasma reforming of the simulated natural gas. For the combined plasma and partial oxidation in the reforming of CO2-containing natural gas, air was found to be superior to pure oxygen in terms of reactant conversions, product selectivities, and specific energy consumption. The optimum conditions were found to be a hydrocarbons-to-oxygen feed molar ratio of 2/1 using air as an oxygen source, an applied voltage of 17.5 kV, and a frequency of 300 Hz, in providing the highest CH4 conversion and synthesis gas selectivity, as well as extremely low specific energy consumption. The energy consumption was as low as 2.73 × 10−18 W s (17.02 eV) per molecule of converted reactant and 2.49 × 10−18 W s (16.60 eV) per molecule of produced hydrogen.  相似文献   
6.
Plasma Chemistry and Plasma Processing - This work was to investigate the effects of Ag-based catalysts and the addition of a second metal (Sn or Cu) loaded on an 0.1% wt% Ag catalyst on the...  相似文献   
7.
In this study, a technique of combining steam reforming with partial oxidation of CO2-containing natural gas in a gliding arc discharge plasma was investigated. The effects of several operating parameters including: hydrocarbons (HCs)/O2 feed molar ratio; input voltage; input frequency; and electrode gap distance; on reactant conversions, product selectivities and yields, and power consumptions were examined. The results showed an increase in either methane (CH4) conversion or synthesis gas yield with increasing input voltage and electrode gap distance, whereas the opposite trends were observed with increasing HCs/O2 feed molar ratio and input frequency. The optimum conditions were found at a HCs/O2 feed molar ratio of 2/1, an input voltage of 14.5?kV, an input frequency of 300?Hz, and an electrode gap distance of 6?mm, providing high CH4 and O2 conversions with high synthesis gas selectivity and relatively low power consumptions, as compared with the other processes (sole natural gas reforming, natural gas reforming with steam, and combined natural gas reforming with partial oxidation).  相似文献   
8.
The effect of stage number of multistage AC gliding arc discharge reactors on the process performance of the combined reforming and partial oxidation of simulated CO2-containing natural gas having a CH4:C2H6:C3H8:CO2 molar ratio of 70:5:5:20 was investigated. For the experiments with partial oxidation, either pure oxygen or air was used as the oxygen source with a fixed hydrocarbon-to-oxygen molar ratio of 2/1. Without partial oxidation at a constant feed flow rate, all conversions of hydrocarbons, except CO2, greatly increased with increasing number of stages from 1 to 3; but beyond 3 stages, the reactant conversions remained almost unchanged. However, for a constant residence time, only C3H8 conversion gradually increased, whereas the conversions of the other reactants remained almost unchanged. The addition of oxygen was found to significantly enhance the process performance of natural gas reforming. The utilization of air as an oxygen source showed a superior process performance to pure oxygen in terms of reactant conversion and desired product selectivity. The optimum energy consumption of 12.05 × 1024 eV per mole of reactants converted and 9.65 × 1024 eV per mole of hydrogen produced was obtained using air as an oxygen source and 3 stages of plasma reactors at a constant residence time of 4.38 s.  相似文献   
9.
Study of Ca-ATMP precipitation in the presence of magnesium ion   总被引:1,自引:0,他引:1  
ATMP (aminotri(methylenephosphonic acid)), a phosphonate scale inhibitor used in the petroleum industry, was used as a model scale inhibitor in this study. One of the goals of this work was to determine the range of conditions under which Mg ions, which are formed in reservoir formations containing dolomite, modulate the formation of Ca-ATMP precipitate as a scale inhibitor. The results revealed that the amount of ATMP precipitated decreased with addition of Mg ions in solution at all values of the solution pH. Furthermore, an increase in both the solution pH and the concentration of the divalent cations in solution resulted in a change of the molar ratio of (Ca + Mg) to ATMP in the precipitates. At a low solution pH (pH 1.5), Mg ions had little effect on the composition of the Ca-ATMP precipitate. However, at higher values of the solution pH (pH 4 and 7), the Ca to ATMP molar ratio in the precipitates decreased with increasing concentration of the Mg. Here it was found that Mg ions replaced Ca ions on available reactive sites of ATMP molecules. These results determined the limits of the Mg ion concentration, which affects the precipitation of Ca-ATMP, Mg-ATMP, and (Ca + Mg)-ATMP. The dissolution of the scale inhibitors was studied using a rotating disk reactor. These experiments showed that the total divalent cation molar ratio (Ca + Mg) to ATMP in the precipitates is the primary factor that controls the rate of dissolution (release) of the phosphonate precipitates. The phosphonate precipitate dissolution rates decreased as the molar ratio of divalent cations to ATMP in the precipitates increased.  相似文献   
10.
Three alkyltrimethylammonium bromides (i.e., dodecyl-, tetradecyl-, and hexadecyltrimethylammonium bromide or DTAB, TTAB, and CTAB, respectively) were used to remove a blue solvent-based ink from a printed surface of high-density polyethylene bottles. Either an increase in the alkyl chain length or the surfactant concentration was found to increase the deinking efficiency. Complete deinking was achieved at concentrations about 3, 8, and 24 times of the critical micelle concentration (CMC) of CTAB, TTAB, and DTAB, respectively. For CTAB, ink removal started at a concentration close to or less than its CMC and increased appreciably at concentrations greater than its CMC, while for TTAB and DTAB, significant deinking was only achieved at concentrations much greater than their CMCs. Corresponding to the deinking efficiency of CTAB in the CMC region, the zeta potential of ink particles was found to increase with increasing alkyl chain length and concentration of the surfactants, which later leveled off at some higher concentrations. Wettability of the surfactants on an ink surface increased with increasing alkyl chain length and concentration of the surfactants. Lastly, solubilization of ink binder in the surfactant micelles was found to increase with increasing alkyl chain length and surfactant concentration. We conclude that adsorption of surfactant on the ink pigment is crucial to deinking due to modification of wettability, zeta potential, pigment/water interfacial tension, and dispersion stability. Solubilization of binder (epoxy) into micelles is necessary for good deinking because the dissolution of the binder is required before the pigment particles can be released from the polymer surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号