首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   12篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1997年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有12条查询结果,搜索用时 31 毫秒
1.
Specific surface, S, of CSH-gel particles of disordered layered structure, was studied by water sorption/retention in two cement pastes differing in strength, i.e. C-33 (weaker) and C-43 (stronger), w/c=0.4. Hydration time in liquid phase was t h=1 and 6 months, followed by hydration in water vapour either on increasing stepwise the relative humidity, RH=0.5→0.95→1.0 (WS) or on its lowering in an inverse order (WR). Specific surface was estimated from evaporable (sorbed) water content, EV (110°C), assuming a bi- and three-molecular sorbed water layer at RH=0.5 or 0.95, respectively (WS). On WR it was three- and three- to four-molecular (50 to 75%), respectively, causing a hysteresis of sorption isotherm. At RH=0.5 the S increased with cement strength from 146 m2 g-1 (C-33, 1 m) to 166 m2 g-1 (C-43, 1 m) and with hydration time to 163 (C-33, 6 m) and to 204 m2 g-1 (C-43, 6 m). At RH=1.0 (and 0.95), higher S-value were measured but these differences were smaller: S amounted to 190-200 m2 g-1 in C-33 (1 and 6 m) and 198-210 m2 g-1 in C-43 (1 and 6 m). Thus no collapse occurred on air drying of paste C-43 (6 m). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
Mixtures of mud with various additives were studied to explain the reasons for the change in geotechnical properties. The additives were: lime, cement, fly ash, water-glass containing either Na2CO3 or CaCl2 and phosphogypsum. An increase in strength was usually associated with increase of weight loss, both on static or dynamic heating. An exothermic peak occurred between 420°C and 490°C., being especially high in the presence of water -glass, together with CaCl2. XRD indicated an increase in calcite content and the possible formation of calcium aluminate silicate hydrate. SEM showed a non-homogeneous microstructure and big pores in case of mixtures of low strength (water-glass addition). A homogeneous aggregated structure was obtained in the case of higher strength (fly ash, phosphogypsum).  相似文献   
3.
Grinding and contact with water or salt solution increased the specific surface (ssa) but lowered the first dehydration effect (escaping up to 150°C) and increased the second dehydration effect (150 to 500°C). The dehydroxylation was moved to lower temperatures and was only ΔM(500-1100°C)=3.7±0.3 % as compared to 5.5% in the parent vermiculite (V). Except ΔM(20-150°C), the mass losses measured at the remaining T ranges, were consistent in the ground samples, thus the grinding for 2 min caused the homogenization of the crystal structure of vermiculite [ΔM(150-500°C)=7.6±0.7%]. DTA curves after grinding and cation exchange indicate an important exothermal peak at 795-870°C, its temperature depending on exchangeable cation. It indicates the formation of high temperature phases (enstatite, forsterite, spinel). The lowest temperature of the peak (795°C) was observed in V-gr-Li, here lithium silicate was formed. The highest peak temperature (870°C) was found in V-gr-K, where almost only forsterite developed. These exothermal peaks were very weak in unground V with various exchangeable cations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
4.
A dredged sludge was studied to investigate the influence of ageing and of pretreatment on its drying rate, water sorption/retention, thermal mass loss, XRD and microstructure (SEM).Ageing caused change in particle thickness and specific surface, a gradual aggregation to form units of the size 10–50 m, formation of macropores of similar size, unhomogeneity and fissures between aggregates and super-aggregates. Macropores were detectable by the initial drying rate especially at 45°C. They indicated a tendency of collapsing at a lower drying rate at 30°C. This is consistent with SEM observations. With ageing the aggregates were more compact and less sensitive to drying.The aggregated system indicated a higher initial drying rate (higher permeability), whereas stirring induced a lower drying rate, favouring the formation of compact laminar structure.XRD peak intensity was lowered with ageing due to decrease in crystallinity (stacking faults and/or decrease in crystallite size). The content of amorphous material was lowered as well, reducing water sorption/desorption, which indicated that the specific surface is lower.From the suitable microstructure induced by ageing some new phases may form (feldspar, zeolites), preferably in the coarser fraction of the sludge. This is disturbed by stirring which operation expels also carbonates from the particle edges and this may reduce the structural strength of the sludge. In aged bentonite suspension a similar tendency was observed of formation of specific microstructures capable of phase transformation, e.g. to feldspar.  相似文献   
5.
Summary Previous study of the hydration and ageing products of two cement pastes created the basis for the postulate of the course of solid-state reactions between the portlandite Ca(OH)2 and the CO2 from air in the hydrated and air dry cement. XRD basal spacing d(001) of portlandite exceeded the nominal value and increased with ageing, with the wetting and drying procedure and with carbonate content of the paste, indicating that a part of OH- ions was gradually substituted by CO32- ions, which are about twice bigger. IR spectroscopy showed a considerable content of portlandite, of CO32- of water and silicates. Also HCO3- H2O and CO2 in cavities between hexagonal rings and hexagonal hydrates were indicated. By MS (mass spectrometry) in vacuum the evaporation of sorbed water was detected at 100-120°C, of gel water at 350°C of portlandite water at 400°C and of high temperature water between 500 and 700°C, simultaneously with CO2 escape. Slightly higher peak temperatures were found by the TG test either in air or in argon. From these results and from geometric considerations it is postulated that the solid-state reactions take place on ageing of the cement paste and on its heating: hexagonal portlanditecalcium carbonate hydroxy hydratecalcium carbonate hydratehexagonal vaterite and/or orthorhombic aragoniterhombohedral calcite The analysis of the standard files of the calcium carbonate hydroxy hydrates supports this postulate and indicates a gradual transformation.  相似文献   
6.
A simple water sorption/retention (WS/WR) test, followed by stepwise static heating, was applied to the study of cement quality and the reactivity of its grain surface. The physically bound water and hence the specific surface both in the unhydrated and in the hydrated state were estimated as a function of the hydration time. Rehydration after heating at 220°C and contact with air was different inWS from that inWR samples, which indicates a difference in microstructure. XRD proved the formation of portlandite during the sorption test and eventual heating at 200°C, and its transformation into carbonates on contact with air, especially on heating at 400°C. The contents of these compounds were estimated from the mass difference between 400 and 800°C, which was compatible with the mass change between 220 and 400°C and this indicates surface reactivity. The test may serve for the routine study of cement. Dedicated to Professor Lisa Heller-Kallai on the occasion of her 65th birthday  相似文献   
7.
Two aged cement pastes (7 years) were studied for H2O and CO2 evolution, the combined amounts of which were measured by TG and identified by thermo-IR analysis. This indicated the presence of three forms of carbonates, which decomposed at different temperatures. The displacement with time of the evaporation of sorbed water to higher temperatures (500–700°C, TG, MS) shows the possibility of its incorporation into carbonate hydrates and/or hydroxy hydrates, postulated previously. The decomposition of all the hydration products needed a thermal energy increasing with ageing (increased temperature measured by TG). The carbonation process proceeded for 7 years in the weaker paste, whereas it terminated before 5 years in the stronger one. The CSH water content did not change with ageing, whereas that of portlandite was lowered, which though did not account for the increase in carbonate content (TG). Possibly some Ca2+ from the CSH gel was involved in this process. In the stronger paste the growth with time of organic matter was found (IR, TG/DTG).  相似文献   
8.
Main hydration products of two cement pastes, i.e. CSH-gel, portlandite (P) (and specific surface S) were studied by static heating, and by SEM, TEM and XRD, as a function of cement strength (C-33 and C-43) hydration time (th) and subsequent hydration in water vapour.Total change in mass on hydration and air drying, Mo, increased with strength of cement paste and with hydration time. Content of water escaping at 110 to 220°C, defined as water bound with low energy, mainly interlayer and hydrate water, was independent on cement strength but its content increased with (th). Content of chemically bound (zeolitic) water in CSH-gel, escaping at 220-400°C, was slightly dependent on strength and increased with (th). It was possibly derived from the dehydroxylation of CSH-gel and AFm phase. Portlandite water, escaping at 400-500°C, was independent on cement strength and was higher on longer hydration. Large P crystals were formed in the weaker cement paste C-33. Smaller crystals were formed in C-43 but they increased with (th). Carbonate formated on contact with air (calcite, vaterite and aragonite), decomposed in cement at 600-700oC. It was high in pastes C-33(1 month) and C-43(1 month), i.e. 5.7 and 3.3%, respectively; it was less than 1% after 6 hydration months (low sensitivity to carbonation) in agreement with the XRD study showing carbonates in the air dry paste (1month), and its absence on prolonged hydration (6 months) and on acetone treatment. Water vapour treatment of (6 months) pastes or wetting-drying increased this sensitivity.Nanosized P-crystals, detected by TEM, could contribute to the cement strength; carbonate was observed on the rims of gel clusters.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   
9.
Cement hydration products were studied as influenced by the hydration conditions (hydration time in liquid phase; relative humidity, RH, in gaseous phase). The formation of calcium hydroxide (portlandite, P) and its transformation to calcium carbonates is mainly discussed here. More hydration products, including P, were formed in liquid phase (paste) than in water vapor (powder), due to the higher availability of water molecules. Full hydration was observed only in the paste hydrated for 6 month, otherwise the P content, estimated from its water escape, DM(400-800°C), increased after storage in water vapor of the prehydrated paste. All the three polymorphs of CaCO3 (calcite, vaterite and aragonite) were found on prolonged contact with air of the hydrated powder (XRD, HRTEM). Their content was dependent on sequence of RH conditions on hydration: higher after water retention, WR, on lowering RH=1.0→0.95→0.5, than after water sorption, WS, on increasing RH in the inverse order. It increased also on wetting and drying, both of hydrated powder and paste. Ca was found to accumulate on the micro-surfaces of WR samples (SEM, TEM), whereas more Al was observed on WS samples and the crystallinity of hydration products was here higher (ED). Dissolution-diffusion-recrystallization was possible: small Al-ions concentrated at one end and the bigger Ca ions - at the other end of some needles (TEM). At 400-500°C the P in cement transforms in air into CaCO3, which decomposes at 600-700°C. Thus the sensitivity to carbonation was estimated from ΔM(600-800°C). This value was similar in pastes hydrated for 1 month and in powder (WR). It was lower in powder WS and much lower in the paste (6 months). It increased pronouncedly when the prehydrated paste was stored in water vapor in WS. The nanocrystals of portlandite, vaterite and aragonite, embedded in the amorphous matrix, were observed by HRTEM in the hydrated powder. They may contribute to the cement strength. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
10.
The hydration products in two aged cement pastes (DTA/DTG/TG) were compared with those in fresh ones (static heating, SH) and were also studied by mass spectrometry (MS), IR and thermo XRD-analysis. The products considered here were: the sorbed water, the CSH gel including hydrates, portlandite, calcite, aragonite and vaterite. Except carbonates their content was higher in the stronger paste C-43, than in C-33, but lowered with ageing (only the CSH gel water remained approximately unchanged). The sorbed water content became with time lower and similar in both pastes (it evaporated up to 155-185°C in TG); the escape of the rest moved to higher temperatures (500-700°C). The three DTG peaks at 200-400°C indicated jennite-like phase in the CSH gel; the mass loss (155-460°C) was higher on ageing due to development of organic matter, especially in C-43 (DTA, TG, IR). Portlandite content changed little and carbonate content increased considerably. They decomposed in air at 470 and 720-740°C, in argon at 450 and 680-710°C and in vacuum at 400 and 630°C, respectively (DTG peak, XRD). Between 500 and 700°C the simultaneous evolution of H2O and CO2was observed by MS, which is attributed to dehydroxylation of jennite-like phase and/or to decomposition of some carbonate hydrate and/or hydrocarbonate (three peaks on CO2evolution curve, MS). The d(001) peak of portlandite exceeded the nominal value and will be analyzed separately.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号