首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
化学   3篇
力学   1篇
  2023年   1篇
  2022年   1篇
  2011年   1篇
  1999年   1篇
排序方式: 共有4条查询结果,搜索用时 78 毫秒
1
1.
One of the well-known ways of increasing the visible light absorption capability of semiconducting materials is cation doping. This study aims to use Gd doping to tailor the bandgap energy of K2Ta2O6 (KTO) for photocatalytic degradation of organic pollutants under visible light irradiation. Accordingly, the parent KTO and Gd-doped KTO with different Gd concentrations (K2-3xGdxTa2O6; x = 0.025, 0.05, 0.075 and 0.1 mol%) were synthesized by hydrothermal and facile ion-exchange methods, respectively. The powder XRD, FT-IR, SEM-EDS, TEM-SAED, N2 adsorption-desorption, XPS, UV–Vis DRS, PL and ESR techniques were used to investigate the effect of Gd dopant concentration on the structural and photocatalytic properties of KTO. The photocatalytic activity of these samples was investigated for the photocatalytic degradation of methylene blue (MB) dye in an aqueous solution at room temperature under visible light irradiation. The experimental results show that all Gd-doped KTO samples exhibit enhanced photocatalytic activity compared with parent KTO toward MB degradation. In particular, Gd-KTO obtained by doping of 0.075 mol% shows the highest photocatalytic activity among the Gd-doped samples and the degradation efficiency of MB was 79% after 180 min of visible light irradiation, which is approximately 1.5 times as high as that by parent KTO (53%). In addition, trapping experiments and electron spin resonance (ESR) analysis demonstrated that the hydroxyl radicals (?OH) have played a crucial role in the photocatalytic degradation of MB. The reusability and stability of Gd doped-KTO with a Gd content of 0.075 mol% against MB degradation were examined for five cycles. Based on the present study results, a visible light induced photocatalytic mechanism has been proposed for Gd0075-KTO sample.  相似文献   
2.
In dynamic network models, the pressure map (the pressure in the pores) must be evaluated at each time step. This calculation involves the solution of a large number of nonlinear algebraic systems of equations and accounts for more than 80 of the total CPU–time. Each nonlinear system requires at least the partial solution of a sequence of linear systems. We present a comparative study of iterative methods for solving these systems, where we apply both standard routines from the public domain package ITPACK 2C and our own routines tailored to the network problem. The conjugate gradient method, preconditioned by symmetric successive overrelaxation, was found to be consistently faster and more robust than the other solvers tested. In particular, it was found to be much superior to the successive overrelaxation technique currently used by many researchers.  相似文献   
3.
Sediment microbial fuel cells (SMFCs) have been used as renewable power sources for sensors in fresh and ocean waters. Organic compounds at the anode drive anodic reactions, while oxygen drives cathodic reactions. An understanding of oxygen reduction kinetics and the factors that determine graphite cathode performance is needed to predict cathodic current and potential losses, and eventually to estimate the power production of SMFCs. Our goals were to (1) experimentally quantify the dependence of oxygen reduction kinetics on temperature, electrode potential, and dissolved oxygen concentration for the graphite cathodes of SMFCs and (2) develop a mechanistic model. To accomplish this, we monitored current on polarized cathodes in river and ocean SMFCs. We found that (1) after oxygen reduction is initiated, the current density is linearly dependent on polarization potential for both SMFC types; (2) current density magnitude increases linearly with temperature in river SMFCs but remains constant with temperature in ocean SMFCs; (3) the standard heterogeneous rate constant controls the current density temperature dependence; (4) river and ocean SMFC graphite cathodes have large potential losses, estimated by the model to be 470 mV and 614 mV, respectively; and (5) the electrochemical potential available at the cathode is the primary factor controlling reduction kinetic rates. The mechanistic model based on thermodynamic and electrochemical principles successfully fit and predicted the data. The data, experimental system, and model can be used in future studies to guide SMFC design and deployment, assess SMFC current production, test cathode material performance, and predict cathode contamination.  相似文献   
4.
Visible light-driven photocatalysis has gained much attention due to its light-harnessing characteristics and is extensively used in wastewater remediation. This paper presents a novel oxygen-deficient manganese antimonate, MnSb2O6-x, with a trirutile structure as an effective visible-light-driven photocatalyst for dye degradation. The synthesized samples were subjected to XRD, UV-Vis DRS, SEM-EDS, Raman, XPS, and PL analyses to study their physic chemical properties. The influence of sequential or single heating during the preparation method on the generation of oxygen vacancies is evaluated using UV-Vis DRS, XPS, ESR, and Raman techniques. The oxygen-deficient MnSb2O6 could achieve up to 85 % of MO degradation in 180 min under visible light irradiation, and its reusability up to six cycles was also investigated. In addition, the mechanism of dye degradation was supported with a scavenger test, and the degradation activities are correlated to the electron-hole pair separation as convinced from the PL spectra. The simple and unique method of oxygen vacancy generation can inspire the development of antimonates with oxygen deficiencies, which have significant scope of application in environmental and energy conservation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号