首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《印度化学会志》2021,98(10):100140
In recent years, the transition-metal tungstate materials with formula MWO4 have attracted much attention in photocatalytic environmental purification due to their interesting structural and optical properties. Among the others, manganese tungstate (MnWO4) has attracted particular attention because of its appropriate bandgap energy (2.67 ​eV) with tunable optical and electrical properties, chemical stability, and low cost which makes a suitable photocatalyst. Nevertheless, the manganese tungstate (MnWO4) based materials are less explored as visible light responsive photocatalysts for wastewater purification. Hence, both parent and N-doped MnWO4 are synthesized by a hydrothermal method with different nitrogen contents (5, 10, and 15 ​mol%). The as-prepared photocatalysts were characterized by XRD, SEM-EDS, TEM-SAED, FT-IR, UV–Vis DRS, XPS and PL techniques. The photocatalytic activities of the synthesized samples were evaluated by degradation of methylene blue (MB) dye under the visible light irradiation. All the N-doped MnWO4 samples exhibited enhanced visible-light photocatalytic activity compared to the parent MnWO4, and the optimal dopant amount of nitrogen was 15 mol% for the best photocatalytic activity. The active species generated during the process of MB degradation are investigated by scavenging experiments. Further, the reusability of the 15 ​mol% N-doped MnWO4 photocatalyst was examined in three consecutive catalytic runs.  相似文献   

2.
Mn‐doped SrMoO4 nanocrystals were synthesized by thermal decomposition of metal–organic salt in an organic solvent with the doping content in the range 0–12 mol%. The structures, morphologies and optical properties were characterized using various techniques. The results suggest that Mo sites in the SrMoO4 lattice are substituted by the Mn dopant, the adsorption bands are found to be shifted toward the visible light region and the band gap becomes narrower correspondingly. The photocatalytic performance of the as‐synthesized product was determined using the degradation of methylene blue by visible light irradiation. The photocatalytic performance is enhanced with Mn doping, and the optimal degradation rate is 85% in 140 min for 5 mol% Mn doping. The enhanced photocatalytic activity with Mn doping may be ascribed to the energy band adjustment and effective photogenerated electron–hole separation caused by the Mn doping. A possible photocatalytic mechanism is also discussed.  相似文献   

3.
The photocatalytic activity of Bismuth‐codoped Sr4Al14O25: Eu2+, Dy3+ persistent phosphors is studied by monitoring the degradation of the blue methylene dye UV light irradiation. Powder phosphors are obtained by a combustion synthesis method and a postannealing process in reductive atmosphere. The XRD patterns show a single orthorhombic phase Sr4Al14O25: Eu2+, Dy3+, Bi3+ phosphors even at high Bismuth dopant concentrations of 12 mol%, suggesting that Bi ions are well incorporated into the host lattice. SEM micrographs show irregular micrograins with sizes in the range of 0.5–20 μm. The samples present an intense greenish‐blue fluorescence and persistent emissions at 495 nm, attributed to the 5d–4f allowed transitions of Eu2+. The fluorescence decreases as Bi concentration increases; that suggest bismuth‐induced traps formation that in turn quench the luminescence. The photocatalytic evaluation of the powders was studied under both 365 nm UV and solar irradiations. Sample with 12 mol% of Bi presented the best MB degradation activity; 310 min of solar irradiation allow 100% MB degradation, whereas only 62.49% MB degradation is achieved under UV irradiation. Our results suggest that codoping the persistent phosphors with Bi3+ can be an alternative to enhance their photocatalytic activity.  相似文献   

4.
Chlorophenols are known as persistent organic pollutants.Therefore,research on the removal of chlorophenols has attracted widespread attention.Hereto,the photocatalytic degradation of 4-chlorophenol by Gd-doped β-Bi2O3 under visible light irradiation was studied.The results showed that Gd-doped β-Bi2O3 materials are efficient catalysts for the photocatalytic degradation of chlorophenols,and 2%(atomic traction)Gd-doped β-Bi2O3 exhibits the highest photocatalytic activity for 4-chlorophenol degradation,because doping an appropriate amount of Gd^3+ions can effectively reduce the recombination rate of the photogenerated e^-/h^+pairs and then enhance the photocatalytic performance.When the reaction was carried out at 25 ℃ for 6 h using the 2% Gd-doped/β-Bi2O3 micro/nano materials of 200 mg and at air flow rate of 40 mL/min,the degradation rate of 4-chlorophenol reached 92.3%.Additionally based on the analysis of the products,it was speculated that the dominant photocatalytic degradation mechanism of 4-chlorophenol by Gd-doped β-Bi2O3 under visible light irradiation is an oxidative process involving an attack by the hydroxyl radical.  相似文献   

5.
During chemical vapor synthesis of TiO2 nanopowders, nitrogen atoms were doped into the crystal lattice of TiO2. The nitrogen atoms were predominantly incorporated substitutionally in the crystal lattice of TiO2 nanopowders up to the doping level of 1.25 mol% nitrogen, whereas they were in both interstitial and substitutional sites over about 1.43 mol% nitrogen. From the photocatalytic activity of nitrogen-doped TiO2 estimated by decomposition of methylene blue under visible light, it was found that the substitutional nitrogen anions appearing at the low level doping was beneficial to its photocatalytic activity, whereas the interstitial ones appearing at the high level doping over 1.25 mol% nitrogen were not. The improved photocatalytic activity due to the substitutionally doped nitrogen was attributed to band gap narrowing which was confirmed by the studies of XPS, near edge X-ray absorption fine structure, and UV–Vis absorption.  相似文献   

6.
In2BiTaO7 was synthesized using the solid-state reaction method and its photocatalytic properties were investigated. The results of powder X-ray diffraction (XRD) indicated that the compound crystallizes in the pyrochlore-type structure, cubic system with space group Fd-3m. The lattice parameter is 10.6972(1) ?. In addition, the compound shows strong optical absorption in the visible region (λ > 420 nm) and the band gap of In2BiTaO7 was estimated to be about 2.47 eV. For the photocatalytic reaction, H2 or O2 evolution was observed from CH3OH/H2O or AgNO3 solution respectively with In2BiTaO7 as the photocatalyst under visible light irradiation, indicating that In2BiTaO7 is responsive to visible light for splitting water. Furthermore, the catalyst remained photoactive in the wavelength range up to 510 nm. Photocatalytic degradation of methylene blue (MB) dye over the compound was further investigated under visible light irradiation. The results showed that complete removal of aqueous MB could be achieved after irradiation for 135 min over In2BiTaO7. Furthermore, under visible light irradiation In2BiTaO7 showed markedly higher catalytic activity compared to P-25 for MB photocatalytic degradation.  相似文献   

7.
An attempt was made to prepare Mn,Fe-codoped nanostructured TiO2 photocatalyst for visible light assisted degradation of an azo dye (methylene blue) in aqueous solutions by a sol-gel process. The asprepared nanoparticles were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (DRS) and photoluminescence spectra (PL) techniques. The photocatalytic activity of Mn,Fe-codoped TiO2 catalyst was evaluated by measuring degradation rates of methylene blue (MB) under visible light. The results showed that doping with the manganese and iron ions significantly enhanced the photocatalytic activity for MB degradation under visible light irradiation. This was ascribed to the fact that a small amount of manganese and iron dopants simultaneously increased MB adsorption capacity and separation efficiency of electron-hole pairs. The results of DRS showed that Mn,Fe-codoped TiO2 had significant absorption between 400 and 500 nm, which increased with the increase of manganese ion content. It is found that the stronger the PL intensity, the higher the photocatalytic activity. This could be explained by the points that PL spectra mainly resulted from surface oxygen vacancies and defects during the process of PL, while surface oxygen vacancies and defects could be favorable in capturing the photoinduced electrons during the process of photocatalytic reactions, so that the recombination of photoinduced electrons and holes could be effectively inhibited.  相似文献   

8.
Photocatalytic degradation of glyphosate contaminated in water was investigated. The N‐doped SnO2/TiO2 films were prepared via sol–gel method, and coated on glass fibers by dipping method. The effects of nitrogen doping on coating morphology, physical properties and glyphosate degradation rates were experimentally determined. Main variable was the concentration of nitrogen doping in range 0–40 mol%. Nitrogen doping results in shifting the absorption wavelengths and narrowing the band gap energy those lead to enhancement of photocatalytic performance. The near optimal 20N/SnO2/TiO2 composite thin film exhibited about two‐ and four‐folds of glyphosate degradation rates compared to the undoped SnO2/TiO2 and TiO2 films when photocatalytic treatment were performed under UV and solar irradiations, respectively, due to its narrowest band gap energy (optical absorption wavelength shifting to visible light region) and smallest crystallite size influenced by N‐doping.  相似文献   

9.
Bi2FeVO7 was prepared by a solid-state reaction technique for the first time and the structural and photocatalytic properties of Bi2FeVO7 were studied. The results shows that this compound crystallized in the tetragonal crystal system with space group I4/mmm. Moreover, the band gap of Bi2FeVO7 was estimated to be about 2.22(6) eV. For the photocatalytic water splitting reaction, H2 or O2 evolution was observed from pure water with Bi2FeVO7 as the photocatalyst by ultraviolet light irradiation. Degradation of aqueous methylene blue (MB) dye by photocatalytic way over this compound was further studied under visible light irradiation. Bi2FeVO7 shows higher catalytic activity compared to TiO2 (P-25) for MB photocatalytic degradation under visible light irradiation. Complete removal of aqueous MB was realized after visible light irradiation for 170 min with Bi2FeVO7 as the photocatalyst. The reduction of the total organic carbon (TOC) and the formation of inorganic products, SO 4 2− and NO 3 revealed the continuous mineralization of aqueous MB during the photocatalytic course.  相似文献   

10.
B,N-TiO2 photocatalysts were synthesized by boron doping firstly and subsequently nitrogen doping in NH3 at variable temperatures. The effects of the nitrogen doping temperature on the structure and photocatalytic activity of the B,N-codoped TiO2 were investigated. The as-prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-vis diffuse reflectance spectrum (DRS), electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activity was evaluated with photocatalytic degradation of methyl orange dye (MO) under visible light and UV-visible light irradiation. The results suggested that the boron and nitrogen can be incorporated into the TiO2 lattice either interstitially or substitutionally or both, while the Ti-O-B-N structure plays a vital role in photocatalytic activity in visible light region. The optimal nitrogen doping temperature is 550 °C. Higher temperature may form many oxygen vacancies and Ti3+ species, resulting in the decrease of photocatalytic activity in visible light.  相似文献   

11.
Cu and N-doped TiO2 photocatalysts were synthesized from titanium (IV) isopropoxide via a microwave-assisted sol-gel method. The synthesized materials were characterized by X-ray diffraction, UV-vis diffuse reflectance, photoluminescence (PL) spectroscopy, SEM, TEM, FT-IR, Raman spectroscopy, photocurrent measurement technique, and nitrogen adsorption–desorption isotherms. Raman spectra and XRD showed an anatase phase structure. The SEM and TEM images revealed the formation of an almost spheroid mono disperse TiO2 with particle sizes in the range of 9-17 nm. Analysis of N2 isotherm measurements showed that all investigated TiO2 samples have mesoporous structures with high surface areas. The optical absorption edge for the doped TiO2 was significantly shifted to the visible light region. The photocurrent and photocatalytic activity of pure and doped TiO2 were evaluated with the degradation of methyl orange (MO) and methylene blue (MB) solution under both UV and visible light illumination. The doped TiO2 nanoparticles exhibit higher catalytic activity under each of visible light and UV irradiation in contrast to pure TiO2. The photocatalytic activity and photocurrent ability of TiO2 have been enhanced by doping of the titania in the following order: (Cu, N) - codoped TiO2 > N-doped TiO2 > Cu-doped TiO2 > TiO2. COD result for (Cu, N)-codoped TiO2 reveals ∼92% mineralization of the MO dye on six h of visible light irradiation.  相似文献   

12.
Bare TiO2 and Cu-doped TiO2 nanoparticles with different nominal doping amounts of Cu ranging from of 0.5 to 5.0 mol% were synthesized using the modified sol–gel method. The samples were physically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller-specific surface area, UV–Vis diffuse reflectance spectroscopy, zeta potential, X-ray photoelectron spectroscopy, inductively coupled plasma, and photoluminescence techniques. The Cu-doped TiO2 exhibited good photocatalytic activity in mineralization of oxalic acid and formic acid under visible light irradiation. Photomineralization of oxalic and formic acids under visible light irradiation revealed greatly enhanced photoactivity exhibited by the 2.0 mol% Cu-doped TiO2 photocatalyst compared to bare TiO2 . The enhanced photocatalytic performance arises from copper ion doping in the TiO2 structure, leading to an extended photoresponsive range, enhanced photogenerated charge separation, and transportation efficiency.  相似文献   

13.
The transparent TiO2 thin films coated on fused-SiO2 substrates were prepared by the sol–gel method and spin-coating technique. Effects of calcination temperature on crystal structure, grain size, surface texture, and light transmittance of the films were investigated. After calcining at 600–1,200 °C, the thicknesses of the TiO2 films were all around 80 nm and the molecular structures of the films were anatase, even at 1,200 °C. The calcined TiO2 films had the ultraviolet light (wavelength 200–400 nm) transmittances of ≤29% and the visible light (wavelength 400–800 nm) transmittance of ≥72%. By photocatalytically decomposing the methylene blue (MB) in water, the photocatalytic activities of the TiO2 thin films were measured and represented using the characteristic time constant (τ) for the MB degradation. While the films prepared at 1,000 and 1,200 °C photodecomposed about 54 mol% of the MB in water (the corresponding τ ≈ 14.8 h) after exposing to 365-nm UV light for 12 h, the films prepared at 600 and 800 °C had smaller τ (≈9.0 h) and photodecomposed about 74 mol% of the MB in water at the same testing conditions.  相似文献   

14.
The photocatalytic degradation for some kinds of dye-constituent aromatics with TiO2 in the presence of phosphate anions in aqueous dispersion was investigated under both visible light (λ>480 nm) and UV irradiation. The influences of phosphate anion upon the degradation of organics under these different conditions was revealed by the measurement of point of zero ξ-potential (P ZC) of TiO2, UV-VIS spectra, HPLC and LC-MS. The adsorption and photodegradation of some organics, which adsorb on the surface of TiO2 by a dominating group bearing a positive charge, was enhanced, while that of others, which adsorb on the surface of TiO2 by a dominating group bearing negative charge, was depressed by the presence of phosphate anions under UV irradiation at the experimental conditions (pH 4.3). It was confirmed that better adsorption of organics on the surface of TiO2 had an advantage in their photocatalytic degradation under UV irradiation. On the other hand, although the adsorption of rhodamine B (RhB) and methylene Blue (MB) markedly increased, their degradation under visible light irradiation was depressed in the presence of phosphate anions. It is suggested that phosphate anion greatly blocked the electron transfer from excited RhB and MB molecules as RhB and MB molecules predominantly adsorbed on the surface of TiO2 through the electrostatic interaction with surface adsorbed phosphate anions.  相似文献   

15.
Mn–N-codoped TiO2 nanocrystal photocatalysts responsive to visible light were synthesized for the first time by a simple hydrothermal synthesis method. X-ray powder diffraction (XRD) measurement indicated that all the photocatalysts have an anatase crystallite structure, and that increase of the doping concentration had little effect on the structure and particle size. Compared to N-doped TiO2, a shift of the absorption edge of Mn–N-codoped TiO2 to a lower energy and a stronger absorption in the visible light region were observed. The Mn–N-codoped TiO2 showed higher photocatalytic reactivity than undoped TiO2 or N-doped TiO2 for the photodegradation of rhodamine B (RhB) under visible light irradiation. The highest photocatalytic activity was achieved on 0.4 mol% Mn–N–TiO2 calcined at 673 K.  相似文献   

16.
模拟太阳光下稀土Gd掺杂TiO2纳米晶的光催化性能研究   总被引:1,自引:0,他引:1  
以甲基橙的光催化降解为探针反应,采用氙灯模拟自然条件下的太阳光,评价了通过酸催化的溶胶-凝胶法制备的稀土Gd掺杂改性TiO2纳米晶的光催化活性及对甲基橙水溶液TOC的去除效果.运用XRD和UV-Vis DRS表征技术考察了Gd掺杂对纳米TiO2的微晶尺寸、晶体结构与光学性能的影响.结果表明,Gd掺杂可以抑制TiO2由锐钛矿相向金红石相的转变,阻碍TiO2晶粒增长,使TiO2的光吸收带边发生蓝移且有利于对可见光的吸收,从而使Gd掺杂TiO2在模拟太阳光下光催化降解甲基橙的能力得到明显提高,但样品对甲基橙水溶液TOC的去除效果要滞后于其对色度的去除.  相似文献   

17.
TiO2 nanowire-nanoparticle hetero-structured films were prepared via a sol–gel method and coated on glass substrates by dipping method for photocatalytic activity. In this study 0, 1, 3, and 5 mol% of Ni doped were studied. One-dimensional TiO2 nanowires (NWs) were prepared by hydrothermal treatment with TiO2 nanoparticles (NPs) which are commercially available. XRD, FESEM, DRS, and XPS were used to characterize the prepared nanowire-nanoparticle hetero-structures films. 3%Ni doped TiO2 hetero-structured film (TNi3) had the highest photocatalytic activity on the degradation of methylene blue (MB). TNi3 films provided about 4.3 times of degradation rate compared to undoped TiO2 (T). It revealed that TNi3 film resulted in shifting the absorption wavelength towards narrowing the energy band gap and small crystallite size. Therefore, the TNi3 film exhibited a photocatalytic activity on the degradation of MB under visible light irradiation greater than undoped film.  相似文献   

18.
High aspect ratio cobalt doped ZnO nanowires showing strong photocatalytic activity and moderate ferromagnetic behaviour were successfully synthesized using a solvothermal method and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), vibrating sample magnetometry (VSM) and UV–visible absorption spectroscopy. The photocatalytic activities evaluated for visible light driven degradation of an aqueous methylene orange (MO) solution were higher than for Co doped ZnO nanoparticles at the same doping level and synthesized by the same synthesis route. The rate constant for MO visible light photocatalytic degradation was 1.9·10−3 min−1 in case of nanoparticles and 4.2·10−3 min−1 in case of nanowires. We observe strongly enhanced visible light photocatalytic activity for moderate Co doping levels, with an optimum at a composition of Zn0.95Co0.05O. The enhanced photocatalytic activities of Co doped ZnO nanowires were attributed to the combined effects of enhanced visible light absorption at the Co sites in ZnO nanowires, and improved separation efficiency of photogenerated charge carriers at optimal Co doping.  相似文献   

19.
ZnTiO3–TiO2/organic pillared montmorillonite (pMt) composite catalyst was successfully prepared in this paper by immobilizing ZnTiO3–TiO2 onto pMt. The composition and texture of the prepared composite catalyst were characterized by X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive spectrometry, ultraviolet–visible light (UV–Vis) diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The photocatalytic activity was tested via photocatalytic degradation of methyl blue (MB) under both visible irradiation and UV light. The results indicated that the ZnTiO3–TiO2/pMt composite catalyst had an apparent absorption at the area of visible irradiation, and exhibited a higher efficiency of photocatalytic degredation of MB under visible irradiation. This was due to the heterostructure of ZnTiO3–TiO2, and the mesoporous structure and specific surface area of the ZnTiO3–TiO2/pMt composite. In addition, the results of the radical scavenging experiments showed that the holes and superoxide radicals are responsible for the degradation of MB under visible irradiation.  相似文献   

20.
Titanium dioxide (TiO2) is recognized as the most efficient photocatalytic material, but due to its large band gap energy it can only be excited by UV irradiation. Doping TiO2 with nitrogen is a promising modification method for the utilization of visible light in photocatalysis. In this work, nitrogen-doped TiO2 films were grown by atomic layer deposition (ALD) using TiCl4, NH3 and water as precursors. All growth experiments were done at 500 °C. The films were characterized by XRD, XPS, SEM and UV–vis spectrometry. The influence of nitrogen doping on the photocatalytic activity of the films in the UV and visible light was evaluated by the degradation of a thin layer of stearic acid and by linear sweep voltammetry. Light-induced superhydrophilicity of the films was also studied. It was found that the films could be excited by visible light, but they also suffered from increased recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号