首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
化学   8篇
晶体学   2篇
物理学   31篇
  2013年   2篇
  2012年   1篇
  2011年   5篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   3篇
  2003年   6篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1996年   1篇
排序方式: 共有41条查询结果,搜索用时 15 毫秒
1.
The InAs quantum structures were formed in silicon by sequential ion implantation and subsequent thermal annealing. Two kinds of crystalline InAs nanostructures were successfully synthesized: nanodots (NDs) and nanopyramids (NPs). The peaks at 215 and 235 cm?1, corresponding to the transverse optical (TO) and longitudinal optical (LO) InAs single-phonon modes, respectively, are clearly visible in the Raman spectra. Moreover, the PL band at around 1.3 µm, due to light emission from InAs NDs with an average diameter 7±2 nm, was observed. The InAs NPs were found only in samples annealed for 20 ms at temperatures ranging from 1000 up to 1200°C. The crystallinity and pyramidal shape of InAs quantum structures were confirmed by HRTEM and XRD techniques. The average size of the NPs is 50 nm base and 50 nm height, and they are oriented parallel to the Si (001) planes. The lattice parameter of the NPs increases from 6.051 to 6.055 Å with the annealing temperature increasing from 1100 to 1200°C, due to lattice relaxation. Energy dispersive spectroscopy (EDS) shows almost stoichiometric composition of the InAs NPs.  相似文献   
2.
Charge trapping and quenching of electroluminescence (EL) in SiO2 layers implanted by Ge and rare earth (RE) ions during hot electron injection were investigated. In case of the SiO2:Ge layer the EL quenching is caused by the transformation of the luminescent defects (Ge–Si or Ge–Ge) to optically inactive centers during hot electron excitation, whereas the EL from rare earth centers is quenched due to the electron trapping by RE-centers or their surroundings, but not due to their optical deactivation. Therefore, the flash lamp post-injection annealing releasing trapped electrons reactivates RE centers and increases the operating time of metal–oxide–silicon light emitting devices (MOSLEDs). PACS 72.20.Jv; 73.40.Qv; 73.50.Gr  相似文献   
3.
We have studied the influence of the hydrostatic pressure during annealing on the intensity of the visible photoluminescence (PL) from thermally grown SiO2 films irradiated with Si+ ions. Post-implantation anneals have been carried out in an Ar ambient at temperatures Ta of 400°C and 450°C for 10 h and 1130°C for 5 h at hydrostatic pressures of 1 bar–15 kbar. It has been found that the intensity of the 360, 460 and 600 nm PL peaks increases with rising hydrostatic pressure during low-temperature annealing. The intensity of the short-wavelength PL under conditions of hydrostatic pressure continues to rise even at Ta=1130°C. Increasing Ta leads to a shift in the PL spectra towards the ultraviolet range. The results obtained have been interpreted in terms of enhanced, pressure-mediated formation of ≡Si–Si≡ centres and small Si clusters within metastable regions of the ion-implanted SiO2.  相似文献   
4.
Light emitting pn-diodes were fabricated on a 5.8 μm thick n-type Si device layer of a silicon-on-insulator (SOI) wafer using standard silicon technology and boron implantation. The thickness of the Si device layer was reduced to 1.3 μm, corresponding to a 4λ-cavity for λ=1150 nm light. Electroluminescence spectra of these low Q-factor microcavities are presented. Addition of Si/SiO2 Bragg reflectors on the top and bottom of the device (3.5 and 5.5 pairs, respectively) is predicted to lead to spectral emission enhancement by ∼270.  相似文献   
5.
JPC – Journal of Planar Chromatography – Modern TLC - The use of thin-layer chromatography (TLC) for separation, identification and quantification of different organic and inorganic...  相似文献   
6.
InAs quantum dots (QDs) were successfully formed in single-crystalline Si by sequential ion implantation and subsequent milliseconds range flash lamp annealing (FLA). Samples were characterized by μ-Raman spectroscopy, Rutherford Backscattering Spectrometry (RBS) high-resolution transmission electron microscopy (HRTEM) and low temperature photoluminescence (PL). The Raman spectrum shows two peaks at 215 and 235 cm?1 corresponding to the transverse optical (TO) and longitudinal optical (LO) InAs phonon modes, respectively. The PL band at around 1.3 μm originates from the InAs QDs with an average diameter 7.5±0.5 nm and corresponds to the increased band gap energy due to the strong quantum confinement size effect. The FLA of 20 ms is sufficient for InAs QDs formation. It also prevents the out-diffusion of implanted elements. Moreover, the silicon layer amorphized during ion implantation is recrystallized by solid-phase epitaxial regrowth during FLA.  相似文献   
7.
The physical limits of downscaling the SiO2 thickness of rare earth implanted metal–oxynitride–oxide–semiconductor-based light emitters are explored by investigating the drop down of the electroluminescence power efficiency with decreasing SiO2 thickness of Tb-implanted devices. It will be experimentally shown that there is a dark zone with an extension of about 20 nm behind the injecting interface in which the hot electrons have not yet gained enough kinetic energy in order to excite the Tb3+ luminescence centers. In addition, replacing the host matrix SiO2 by SiON results in a decrease of power efficiency by two orders of magnitude what is consistent with the experimental data about the hot energy distribution in these media.  相似文献   
8.
A SiC/SiC composite is characterized by X-ray diffraction, atomic force microscopy and various positron spectroscopies (slow positron implantation, positron lifetime and re-emission). It is found that besides its main constituent 3C-SiC the composite still must contain some graphite. In order to better interpret the experimental findings of the composite, a pyrolytic graphite sample was also investigated by slow positron implantation and positron lifetime spectroscopies. In addition, theoretical calculations of positron properties of graphite are presented.  相似文献   
9.
When amorphous silica is bombarded with energetic ions, various types of defects are created as a consequence of ion-solid interaction (oxygen deficient centers (ODC), non-bridging oxygen hole centers (NBOHC), E-centers, etc.). Luminescent peaks from oxygen deficiency centers at 2.7 eV, non-bridging oxygen hole centers at 1.9 eV and defect centers with emission at 2.07 eV were observed by changing the concentration of implanted Gd3+ ions. Charge trapping in Gd-implanted SiO2 layers was induced using constant current electron injection to study the electroluminescence intensity with dependence on the applied voltage change. The process of electron trap generation during high field carrier injection results in an increase of the electroluminescence from non-bridging oxygen hole centers. Direct correlation between electron trapping and the quenching of the electroluminescence at 2.07 eV and 2.7 eV was observed with variation of the implanted Gd concentration. PACS 78.60.i; 72.20.Jv; 78.20.-e  相似文献   
10.
We report on the electrical and optical characteristics of silicon light-emitting pn diodes. The diodes are prepared by ion implantation of boron at high doses and subsequent high-temperature annealing. Under forward bias, the diodes emit infrared electroluminescence closely below the band gap of bulk Si. We present a rate-equation model for bound excitons, free excitons and free carriers which successfully describes the electrical and optical behaviour of the diodes at low temperatures. Especially, an electrical bistability observed below 50 K is shown to be based on the interplay of bound excitons, free excitons and free carriers in the active area of the diodes. The ionisation of bound excitons is the origin of an improved electroluminescence from the diodes at higher lattice temperatures. PACS 78.60.Fi; 78.55.Ap; 71.35.-y; 71.55.Cn  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号