首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   9篇
化学   126篇
晶体学   1篇
数学   6篇
物理学   38篇
  2023年   2篇
  2022年   1篇
  2021年   8篇
  2020年   4篇
  2019年   4篇
  2018年   11篇
  2016年   7篇
  2015年   2篇
  2014年   5篇
  2013年   11篇
  2012年   11篇
  2011年   7篇
  2010年   8篇
  2009年   16篇
  2008年   12篇
  2007年   10篇
  2006年   7篇
  2005年   3篇
  2004年   10篇
  2003年   3篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1989年   1篇
  1988年   1篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1977年   1篇
  1975年   1篇
  1965年   1篇
排序方式: 共有171条查询结果,搜索用时 15 毫秒
1.
The template condensation of acetoacetic-2-pyridylamide with amino aliphatic alcohols such as 2-aminoethanol (HL1) and 3-amino propanol (HL2) in the presence of copper(II) ions gave octahedral complexes, which have been characterized by elemental analyses, u.v.-vis. and i.r. spectra, conductivity, d.t.a, magnetic and e.s.r. measurements. The molar conductance in DMF indicate that the complexes are non-ionic in character. The e.s.r. spectra of solid complexes (2) and (5) at room temperature indicate axial type symmetry (dx2-y2) with covalent bond character.  相似文献   
2.
3.
The development of near-infrared (NIR) fluorescent probes over the past few decades has changed the way that biomolecules are imaged, and thus represents one of the most rapidly progressing areas of research. Presently, NIR fluorescent probes are routinely used to visualize and understand intracellular activities. The ability to penetrate tissues deeply, reduced photodamage to living organisms, and a high signal-to-noise ratio characterize NIR fluorescent probes as efficient next-generation tools for elucidating various biological events. The coupling of self-labeling protein tags with synthetic fluorescent probes is one of the most promising research areas in chemical biology. Indeed, at present, protein-labeling techniques are not only used to monitor the dynamics and localization of proteins but also play a more diverse role in imaging applications. For instance, one of the dominant technologies employed in the visualization of protein activity and regulation is based on protein tags and their associated NIR fluorescent probes. In this mini-review, we will discuss the development of several NIR fluorescent probes used for various protein-tag systems.

This minireview describes the development of NIR chemical probes for various protein-tag systems.  相似文献   
4.
Blends of thermoplastic starch with poly(ethylene‐co‐vinyl alcohol) copolymer (EVOH) were melt extruded with water/glycerol as plasticizer and a series of amino acid additives. The biggest factor in end‐use mechanical properties proved to be the relative humidity (RH) during storage. Plasticized starch‐EVOH blends stored at 0 and 50% RH changed significantly over time, with, for example, the tensile strength (TS) of the glycerol‐plasticized blend increasing from 4.7 to 26.3 MPa over 8 weeks when maintained at 0% RH. In contrast, the TS of this same sample stored at 75% RH remained unchanged for 8 weeks. Amino acids provided relatively minor, but significant changes in mechanical properties with time. Based on TS, elongation‐to‐break, and modulus, it may be concluded that β‐alanine, sarcosine, and L ‐proline were more effective than glycerol at maintaining strong flexible blends. Increases in crystallinity and changes in morphology with time, as described by modulated DSC were correlated to these changes in mechanical properties. Published in 2007 by John Wiley & Sons, Ltd.  相似文献   
5.
Blends and composites based on environmentally degradable-ecocompatible synthetic and natural polymeric materials and fillers of natural origin have been prepared and processed under different conditions. Poly(vinyl alcohol) (PVA) was used as the synthetic polymer of choice by virtue of its capability to be processed from water solution or suspension as well as from the melt by blow extrusion and injection molding. Starch and gelatin were taken as the polymeric materials from renewable resources. The fillers were all of natural origin, as waste from food and agro-industry consisted of sugar cane bagasse (SCB), wheat flour (WF), orange peels (OR), apple peels (AP), corn fibres (CF), saw dust (SD) and wheat straw (WS). All the natural or hybrid formulations were intended to be utilized for the production of: a) Environmentally degradable mulching films (hydro-biomulching) displaying, in some cases, self-fertilizing characteristics by in situ spraying of water solutions or suspensions; b) Laminates and containers to be used in agriculture and food packaging by compression and injection molding followed by baking. Some typical prototype items have been prepared and characterized in relation to their morphological and mechanical properties and tested with different methodology for their propensity to environmental degradation and biodegradation as ultimate stage of their service life. A relationship between chemical composition and mechanical properties and propensity to biodegradation has been discussed in a few representative cases.  相似文献   
6.
Polypyrrole composite cation- and anion-exchange membranes (CEM and AEM), in which polypyrrole (PPY) coated on one surface of the membrane as a thin layer, were prepared by chemical polymerization of pyrrole in the presence of high oxidant concentration (Na2S2O8). Existence of polypyrrole layer on the both types of ion-exchange membranes were confirmed by recording their coating density, SEM images and conductivity. These membranes were extensively characterized by recording their properties such as water uptake, ion-exchange capacity, contact angle, permselectivity and membrane conductivity as a function of polymerization time such as. It was observed that due to coating of PPY for 2 h, membrane permselectivity of CEM for NaCl (0.907) was reduced to 0.873, while it was increased from 0.747 to 0.889 in the case of AEM. Similar behaviors were also obtained for bi-valent electrolytes. Electrodialysis experiments were also conducted with polypyrrole composite ion-exchange membranes using mixed electrolytic systems. Relative dialytic rates for NaCl with respect to other bi-valent electrolyte were varied in between 5 and 8 (depending on bi-valent electrolyte), which suggested the feasible and efficient separation of mono-valent from bi-valent electrolyte. Slower electro-migration of bi-valent electrolyte (CaCl2, MgCl2 and CuCl2) in comparison to NaCl was explained on the basis of synergetic effect of sieving of bulkier bi-valent cations by tight and rigid polypyrrole layer and the difference in electrostatic and hydrophobic–hydrophilic repulsion force between bi-valent cations and mono-valent cation. It was concluded that these composite membranes are suitable for the efficient separation of same type of charged ions by electro-driven separation techniques.  相似文献   
7.
Sulfonated poly(ether ether ketone) (PEEK) was prepared by sulfonation of commercial Victrex@ PEEK and degree of sulfonation was found to be about 44.5% by 1H NMR. Sulfonated PEEK/polyaniline composite membranes, in order to prevent methanol crossover, were prepared by chemical polymerization of a thin layer of polyaniline (PANI) in the presence of a high oxidant concentration on a single face modification. FTIR and PANI coating density studies confirmed the loading of PANI in sulfonated PEEK membrane matrix. PANI composite membranes with different polymerization time were prepared and subjected to thermogravimetric analysis as well as electrochemical and methanol permeability study to compare with sulfonated PEEK and Nafion 117 membrane. Ion-exchange capacity, water uptake, proton transport numbers and proton conductivities for different PANI composite sulfonated PEEK (SPEEK) membranes were found to be dependent on the coating density of the PANI in the membrane matrix and were slightly lower than that of Nafion 117 membrane. Methanol permeability of these membranes (especially SPEEK/PANI-1.5) was about four times lower than Nafion 117 membrane. Among the all SPEEK membranes synthesized in this study, SPEEK-1.5 appears to be more suitable for direct methanol fuel cell (DMFC) application considering optimum physicochemical and electrochemical properties, thermal stability as well as very low methanol permeability. Above all, the cost-effective and simple fabrication technique involved in the synthesis of such composite membranes makes their applicability quite attractive.  相似文献   
8.
Summary.  5-Isopropyl-6-naphthyl uracil and 5-isopropyl-6-naphthyl-2-thiouracil were alkylated to give N-1-(ethoxymethyl and methylthiomethyl) uracil and S2-cyclohexyl-thiouracil, respectively. 5-Ethyl-6-naphthyl uracil and 5-ethyl-6-naphthyl-2-thiouracil afforded N-1-(ethoxymethyl, methoxy-methyl, methylthiomethyl, acetoxyethoxy methyl and hydroxyethoxy methyl) uracil and S2-((2,2- diethoxyethyl), methoxycarbonylmethyl, ethoxycarbonylpropyl, methylthiomethyl, ethoxymethyl, methyl and cyclohexyl)-thiouracil upon alkylation. Received September 25, 2001. Accepted (revised) December 3, 2001  相似文献   
9.
10.
BackgroundThe recent pandemic by COVID-19 is a global threat to human health. The disease is caused by SARS-CoV-2 and the infection rate is increased more quickly than MERS and SARS as their rapid adaptation to varied climatic conditions through rapid mutations. It becomes more severe due to the lack of proper therapeutic drugs, insufficient diagnostic tool, scarcity of appropriate drug, life supporting medical facility and mostly lack of awareness. Therefore, preventive measure is one of the important strategies to control. In this context, herbal medicinal plants received a noticeable attention to treat COVID-19 in Indian subcontinent. Here, 44 Indian traditional plants have been discussed with their novel phytochemicals that prevent the novel corona virus. The basic of SARS-CoV-2, their common way of transmission including their effect on immune and nervous system have been discussed. We have analysed their mechanism of action against COVID-19 following in-silico analysis. Their probable mechanism and therapeutic approaches behind the activity of phytochemicals to stimulate immune response as well as inhibition of viral multiplication discussed rationally. Thus, mixtures of active secondary metabolites/phytochemicals are the only choice to prevent the disease in countries where vaccination will take long time due to overcrowded population density.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号