首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
化学   25篇
力学   2篇
物理学   2篇
  2024年   1篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   1篇
  2016年   1篇
  2014年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1994年   1篇
  1984年   1篇
  1976年   1篇
  1975年   1篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
The copolymerization of acrylonitrile (AN) in dimethylformamide (DMF) was retarded by the presence of itaconic acid (IA) comonomer. Addition of TEA helped overcome the retardation at enhanced concentrations of IA in the feed. The monomer reactivity ratios determined by both terminal and penultimate models revealed that the overall monomer reactivity’s are practically unaffected by the presence of TEA. The penultimate-unit effect for radicals terminated in AN was enhanced by the presence of TEA. Higher TEA concentrations helped regain the reactivities of AN and IA to AN-radical to the state in pure DMF. The penultimate model could explain the feed-copolymer composition profile for the whole range. Whereas IA systematically retarded the polymerization rate at all concentration regime in DMF, it increased the rate at higher IA concentration in DMF/TEA system. For a given IA concentration, the polymerization rate decreased as the solvent is enriched in TEA. The copolymers synthesized in the presence of TEA, manifested higher cyclization temperature and consequently lower char residue, attributed to the incorporation of TEA in the polymer by means of salt formation with IA moiety camouflaging the catalytic effect of the -COOH group in cyclization reaction. 13C-NMR studies confirmed the incorporation of the TEA molecules in the polymer chain.  相似文献   
2.

The rheological behavior of dope solutions of poly(acrylonitrile‐co‐itaconic acid) or poly(AN‐co‐IA) is important from the point of view of deriving the spinning conditions for good quality special acrylic fibers. The viscosity of the resin dope is dictated by the polymer concentration, molar mass, temperature and shear force. The dynamic shear rheology of concentrated poly(AN‐co‐IA) polymer dope solutions in N, N‐dimethylformamide, in the molar mass (M¯v) range of 1×105 to 1×106 g/mol, was investigated in the shear rate (γ′) range of 1×101 to 5×104 min?1. An empirical relation between η and M¯v was found to exist at constant shear rate. The dope viscosity was dependent on the molar mass and the shear rate at a given temperature (T) and concentration. The polymer molar mass index of dope viscosity (m) was calculated as functions of concentration (c), shear rate and temperature. The m values increased with shear rate and temperature. A master equation relating m, with shear rate and temperature was derived for a given dope concentration. At higher shear rates, m tends to the value of 3.4, which is close to the molar mass index of viscosity reported for molten thermoplastics. m increased significantly with shear rate and nominally with temperature, while an increase in concentration decreased it. The onset of shear thinning of the dope shifted to a lower shear rate regime with an increase in polymer concentration and the molar mass. For a given value of molar mass, the increase in viscosity of the dope solution with polymer concentration was dependent on the shear rate.  相似文献   
3.
In the last few years, polymer bioconjugates have been shown to be useful in many emerging areas of materials science. Consequently, the synthesis of polymer bioconjugates has suddenly become a central topic in polymer chemistry. The versatility and robust nature of modern synthetic methods such as controlled radical polymerisation (CLRP),1 ring-opening polymerisation (ROP), and ‘click’ chemistry make them excellent tools for the preparation of tailor-made polymer bioconjugates. CLRP in combination with other techniques has been shown to be a mature technology for building tailor-made block copolymers and protein–polymer conjugates with a wide range of applications, especially in biomedical domains. This review describes the recent advances and progress in the rapidly expanding field of bioconjugation, outlining the work performed up to 2012.  相似文献   
4.
5.
We address the problem of inverse dynamics for flexible multibodies, which arises, in trajectory tracking control of flexible multibodies such as space manipulators and articulated flexible structures. Previous research has resolved this trajectory tracking problem by computing the system inputs for feedforward control of actuators at the joints. Recently, the use of distributed actuators like electro-strictive actuators in flexible structures has introduced a new dimension to this trajectory tracking problem. In this paper we optimally utilize such actuators to aid joint actuators for tracking control, and introduce a new inverse dynamics scheme for simultaneously (1) tracking a prescribed trajectory and (2) minimizing ensuing elastic deflections. We apply this scheme for trajectory tracking of a two-link two-joint planar manipulator with joint motors and distributed electro-strictive actuators. Experimental results are presented to contrast our new scheme with other existing methods.  相似文献   
6.
The theoretical interest in small Lorentz violations has motivated experiments that investigate it by measuring deviations in the time dilation predicted by special relativity (SR) using high-energy ions. The main contribution of this article is to show that including the Doppler effect in the emission (which is of the same order as the time dilation effect) in the analysis leads to differences between experimental and theoretical predictions that indicate potential Lorentz violation.  相似文献   
7.
We have investigated the potential energy curves (PECs) of the LiN heteronuclear diatomic molecule, including its ionic species LiN+ and LiN, using explicitly correlated multi-reference configuration interaction (MRCI-F12) calculations in conjunction with the correlation consistent quintuple-𝜁 basis set. The effect of core–valence correlation, scalar relativistic effects, and the size of the basis sets has been investigated. A comprehensive set of spectroscopic constants determined based on the above-mentioned calculations are also reported for the lowest electronic states and all systems, including dissociation energies, harmonic and anharmonic vibrational frequencies, and rotational constants. Additional parameters, such as the dipole moments, equilibrium spin-orbit constants, excitation energies, and rovibrational energy levels, are also documented. We found that the three triplet states of LiN, namely, X 3, A 3Π, and 2 3, exhibit substantial potential wells in the PEC diagrams, while the quintet states are repulsive in nature. The ground state of the anion also shows a deep potential well in the vicinity of its equilibrium geometry. In contrast, the ground and excited states of the cation are very loosely bound. Charge transfer properties of each of these states are also analyzed to obtain an in-depth understanding of the interatomic interactions. We found that the core–valence correlation has a substantial effect on the calculated spectroscopic constants.  相似文献   
8.
Synthesis of binuclear Cu(II) terminally closed [ 2+2 ]- double-stranded helicate-like macrocycles 1, 1′ , 1″ , 2 , 2′ , 2″ and 2+4- μ4-oxo tetranuclear open frame complexes 3 , 3′ , 3″ , 4 , 4′ , 4″ are established. Adapting one-pot self-assembly technique from simple three components systems: 1,1′-binaphthyl-2,2′-diamine, 4-methyl-2,6-diformyl phenol and cupric salts, the helicate-like [ 2+2 ]- macrocyclic complexes 1–1″, 2–2″ and 2+4- μ4-oxo tetranuclear complexes 3–3″ , 4–4″ were obtained by appropriately altering the reaction condition such as temperature and subcomponent ratio. Density Functional Theory (DFT) calculations were carried out for understanding the structural geometries, intermediates involved in the diverse formation of [ 2+2 ] and 2+4 frameworks. The single crystal X-ray structures obtained for 1′ , 2 and 3 confirms the self-assembly process in line with DFT. This detailed analysis tempted us to derive a plausible mechanism for this long standing challenge in the synthesis of such macrocycles using 1,1′-binaphthyl-2,2′-diamine (BNDA) and aromatic aldehyde. The chiroptical properties of enantiopure complexes and their catalytic applications in asymmetric oxidative coupling of 2-naphthol to chiral 1,1’-Bi-2-naphthol (BINOL) achieved in good yield and ee were discussed.  相似文献   
9.
Copolymerization of acrylonitrile (AN) with itaconic acid (IA) in dimethylformamide (DMF) and DMF/water mixture was investigated at enhanced concentrations of the latter. Analysis of the copolymer composition revealed the existence of a marked penultimate unit effect with respect to radicals terminated in AN. The reactivity of IA was considerably less than that of AN, manifested as a negative reactivity ratio for the former. The rIA values ranging from −0.28 to −0.50 and rAN values ranging from 0.53 to 0.70, were obtained by Kelen-Tudo's (KT) and extended KT methods. The penultimate reactivity ratios were determined by both linear and non-linear methods. The values ranged from r1=0.009 to 0.01, r1=0.0015 to 0.0043, r2=0.54 to 0.69 and r2=0.9 to 1.03. The reactivity of AN radical towards IA decreased about twofold when the latter formed the penultimate group. The penultimate model explained an acceptable rational feed-copolymer composition profile for the whole composition range. Addition of water decreased the reactivity of IA slightly. IA caused a decrease in the apparent copolymerization rate in agreement with the observed trends in the reactivity ratios; presence of water caused a further decrease in the rate of polymerization. A statistical prediction of monomer sequences based on reactivity ratios implied that IA existed as a lone monomer unit between the long sequences of AN units.  相似文献   
10.
Copper‐ and palladium‐mediated transmetalation and coupling reactions are the backbone to several synthetic methodologies in organic chemistry for C–C bond formation. Computer‐aided simulations using density functional theory (DFT) (B3LYP‐D3 functional with 6‐31G** and effective core potential (ECP)‐LACVP** for heavy atoms for optimizations and cc‐pVTZ(?f) and ECP‐LACV3P** for single‐point calculations) was used to shed light on the probable mechanism of a novel synergistic Cu/Pd catalysts for the coupling of alkene, (Bpin)2 (where, pin = pinacolate), and vinyl‐ or aryl‐halogenated analogues. Every single conceivable pathway was carefully contemplated, and the base minimum energy pathway was found effectively. The copper‐catalyzed nucleophilic generation yields anti‐Markovnikov product using styrene as an alkene. This study affirms quantitatively and accurately how the reaction proceeds and at which steps of the synergistic catalysis the demand of the transmetalation and nucleophile formation for the C–C coupling using phosphine ligands arise. We conclude that the E and Z selectivity depends on the stereochemistry of the substrates used.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号