首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   4篇
化学   70篇
数学   3篇
物理学   26篇
  2019年   3篇
  2017年   1篇
  2016年   3篇
  2013年   6篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   5篇
  2008年   2篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2001年   2篇
  2000年   4篇
  1999年   9篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1983年   3篇
  1982年   3篇
  1981年   1篇
  1979年   2篇
  1978年   2篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1967年   1篇
  1931年   2篇
排序方式: 共有99条查询结果,搜索用时 593 毫秒
1.
Apparent molar volumes of aqueous solutions of argon and xenon have been calculated using a previously developed comprehensive equation of state for nonelectrolyte systems. The equation consists of a virial expansion truncated after the fourth virial coefficient and a closed-form term approximating higher coefficients. Mixing rules are based on the composition dependence of virial coefficients, which is known from statistical mechanics. The equation accurately represents vapor-liquid and gas-gas equilibria for the Ar+H2O and Xe+H2O systems over wide ranges of pressure and temperature using two binary parameters. With the binary parameters determined from phase equilibrium data, the equation accurately predicts apparent molar volumes V in the near-critical and far-from-critical regions. Apart from reproducing experimental V data, the equation reveals remarkable maxima of V as a function of pressure and temperature in the near-critical region. The implications of this equation with respect to the Ar–H2O potential are discussed via the second virial coefficient.  相似文献   
2.
3.
4.
The ion interaction approach developed by Pitzer was used for the prediction of volumetric properties of mixed electrolyte solutions at 25°C based on parameters calculated from experimental data for single-solute electrolyte solutions. Such an approach was shown to be especially effective for application to the calculation of volumetric properties of natural hypersaline brines and of industrial electrolyte solutions of large complexity. The use of the latest recommended sets of volumetric ion interaction parameters for single electrolyte solutions and symmetrical mixing parameters for Na–K–Cl ion combinations considerably improved the precision of the density calculations of highly concentrated mixed electrolyte solutions and of various natural waters.  相似文献   
5.
6.
Catalytic activity of Os(VIII) in the oxidation of some twenty organic sulfides with sodium salt of N-chlorobenzenesulfonamide (CAB) has been investigated in alkaline (pH8.7) t-butanol–water (1:1 v/v) medium. Significant retarding influence of [OH] on the reactivity is exhibited. The catalysed reaction is strongly accelerated in the presence of Hg(II). Imperfections are observed in the linear Hammett relationship in the case of –NO2 substituents.  相似文献   
7.
8.
Three new visible-light-promoted functionalizations of benzotriazole substrates were discovered using a mechanism-based screening method. ortho-Thiolated, borylated, and alkylated N-arylbenzamide products were obtained under mild reaction conditions in a new denitrogenative synthetic approach to functionalized aniline derivatives. The functional group tolerance of the borylation reaction was further analyzed in the first application of an additive-based robustness screen in a photocatalytic transformation. All the functionalizations proceed via photocatalytically initiated chain mechanisms as indicated by determination of the reaction quantum yields and Stern–Volmer analyses.  相似文献   
9.
Nano titanium dioxide (nTiO2), generally considered to be toxicologically inert, is manufactured in large quantities and extensively applied in consumer products. The small size and large surface area endow them with an active group or intrinsic toxicity. Advances in instrumentation are making Raman spectroscopy the tool of choice for an increasing number of (bio) chemical applications. One of the great advantages of this technique is its ability to provide information on the concentration, structure and interaction of biochemical molecules in their microenvironments within intact cells and tissues, non-destructively. Zebrafish (Danio rerio), one of the most important vertebrate model organisms used in developmental biology, are increasingly used in biomedical research, particularly as a model of human disease. In the present work, an attempt is made to study the effect of titanium dioxide, both nano and bulk, on the microenvironment of the liver tissues of Zebrafish using FT-Raman spectroscopy. The results of the present study suggest that TiO2 exposure demonstrate a marked influence on the microenvironments of the liver tissues of Zebrafish. A shift to a higher wavenumber and an increase in the intensity of the band at ∼1087 cm−1 in the TiO2 exposed tissues suggest that some of the conformational changes resulting from the alkali recovery process takes place due to TiO2 exposure. The decreased intensity ratio (I3220/I3400) observed in the titanium-exposed tissues suggests a decreased water domain size, which could be interpreted in terms of weaker hydrogen-bonded molecular species of water in the TiO2 exposed tissues. The observed shift of COO bands to higher frequencies shows the disruption of salt bridges as a result of a change in the oppositely charged partners and due to the enhanced random coil conformation. The variation in the intensity ratio of the tyrosyl doublet (I858/I825) indicates variation in the hydrogen bonding of the phenolic hydroxyl group due to TiO2 exposure. The results further suggest that the microenvironments are greatly altered due to titanium nano exposure when compared to titanium bulk. In conclusion, the results indicate that FT-Raman spectroscopy might be a useful tool for rapid assessment of nano particle biological interactions.  相似文献   
10.
The contribution of higher-order electrostatic terms (beyond the Debye-Hückel approximation) to the thermodynamic properties of mixed and pure electrolytes is investigated. It is found that these effects are important for cases of unsymmetrical mixing, especially when one ion has a charge of three units or more. The appropriate correction can be made by a purely electrostatic function since the mutual repulsion of ions of the same sign keeps them far enough apart that short-range forces have little effect. This function is evaluated, and several convenient approximations are also given. Application is made to systems mixing ions of the type 1–2 and 1–3. Higher-order limiting laws exist for symmetrical mixtures and for pure, unsymmetrical solutes, but these effects were not found to be significant in relationship to existing activity or osmotic-coefficient data.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号