首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
化学   17篇
物理学   8篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2007年   4篇
  2006年   2篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1995年   1篇
  1993年   1篇
  1988年   1篇
  1986年   2篇
  1981年   1篇
排序方式: 共有25条查询结果,搜索用时 125 毫秒
1.
2.
3.
Hepatitis C virus (HCV) is a global health problem and a leading cause of liver disease. Here, we demonstrate that the replication of HCV replicon RNA in Huh-7 cells is inhibited by a peroxisome proliferator-activated receptor (PPAR) antagonist, 2-chloro-5-nitro-N-(pyridyl)benzamide (BA). Downregulation of PPARgamma with RNA interference approaches had no effect on HCV replication in Huh-7 cells, whereas PPARalpha downregulation inhibited HCV replication. Fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy demonstrate a clear buildup of lipids upon treatment with BA. These observations are consistent with the misregulation of lipid metabolism, phospholipid secretion, cholesterol catabolism, and triglyceride clearance events associated with the inhibition of PPARalpha. The inhibition of HCV replication by BA may result from disrupting lipidation of host proteins associated with the HCV replication complex or, more generally, by disrupting the membranous web where HCV replicates.  相似文献   
4.
5.
6.
7.
Copper toxicity is a critical issue in the development of copper-based catalysts for copper(I)-catalyzed azide-alkyne cycloaddition (CuAAC) reactions for applications in living systems. The effects and related toxicity of copper on mammalian cells are dependent on the ligand environment. Copper complexes can be highly toxic, can induce changes in cellular metabolism, and can be rapidly taken up by cells, all of which can affect their ability to function as catalysts for CuAAC in living systems. Herein, we have evaluated the effects of a number of copper complexes that are typically used to catalyze CuAAC reactions on four human cell lines by measuring mitochondrial activity based on the metabolism of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) to study toxicity, inductively coupled plasma mass spectrometry to study cellular uptake, and coherent anti-Stokes Raman scattering (CARS) microscopy to study effects on lipid metabolism. We find that ligand environment around copper influences all three parameters. Interestingly, for the Cu(II)-bis-L-histidine complex (Cu(his)(2)), cellular uptake and metabolic changes are observed with no toxicity after 72 h at micromolar concentrations. Furthermore, we show that under conditions where other copper complexes kill human hepatoma cells, Cu(I)-L-histidine is an effective catalyst for CuAAC labeling of live cells following metabolic incorporation of an alkyne-labeled sugar (Ac(4)ManNAl) into glycosylated proteins expressed on the cell surface. This result suggests that Cu(his)(2) or derivatives thereof have potential for in vivo applications where toxicity as well as catalytic activity are critical factors for successful bioconjugation reactions.  相似文献   
8.
Raman and coherent anti-Stokes Raman scattering (CARS) microscopies have the potential to aid in detailed longitudinal studies of RNA localization. Here, we evaluate the use of carbon-deuterium and benzonitrile functional group labels as contrast agents for vibrational imaging of hepatitis C virus (HCV) replicon RNA. Dynamic light scattering and atomic force microscopy were used to evaluate the structural consequences of altering HCV subgenomic replicon RNA. Modification with benzonitrile labels caused the replicon RNA tertiary structure to partially unfold. Conversely, deuterium-modified replicon RNA was structurally similar to unmodified replicon RNA. Furthermore, the deuterated replicon RNA provided promising vibrational contrast in Raman imaging experiments. The functional effect of modifying subgenomic HCV replicon RNA was evaluated using the luciferase gene as a genetic reporter of translation. Benzonitrile labeling of the replicon RNA prevented translation in cell-based luciferase assays, while the deuterated replicon RNA retained both translation and replication competency. Thus, while the scattering cross-section for benzonitrile labels was higher, only carbon-deuterium labels proved to be non-perturbative to the function of HCV replicon RNA.  相似文献   
9.
Silver nanoparticles bonded to terminal alkynes form stable particles in aqueous solution, produce strong SERS signals for molecular imaging that arise from the carbon-metal bond, and expand the scope of molecules that can be used to stably functionalize plasmonic particles for mammalian cell imaging applications. β-Lactams represent a class of biologically important molecules that can be adapted to SERS studies in this manner.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号