首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
化学   9篇
物理学   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2007年   1篇
  1999年   1篇
排序方式: 共有10条查询结果,搜索用时 968 毫秒
1
1.
Silver nucleation on gold has been exploited for signal amplification and has found application in several qualitative and quantitative bio-sensing techniques, thanks to the simplicity of the method and the high sensitivity achieved. Very recently, this technique has been tentatively applied to improve the performance of gold-based immunoassays. In this work, the exploitation of the signal amplification due to silver deposition on gold nanoparticles has been first applied to a competitive lateral flow immunoassay (LFIA). The signal enhancement due to silver allowed us to strongly reduce the amount of the competitor and of specific antibodies employed to build an LF device for measuring ochratoxin A (OTA), thus permitting the attainment of a highly sensitive assessment of OTA contamination, with a sensitivity gain of more than 10-fold compared to the gold-based LFIA that used the same immunoreagents and to all previously reported LFIA for measuring OTA. In addition, a less sensitive “quantitative” LFIA could be established, by suitably tuning competitor and antibody amounts, which was characterized by reproducible and accurate OTA determinations (RSD% 6–12 %, recovery% 82–117 %). The quantitative system allowed a reliable OTA quantification in wines and grape musts at the microgram per liter level requested by the European legislation, as demonstrated by a highly results obtained through the quantitative silver-enhanced LFIA and a reference HPLC-FLD on 30 samples.
Figure
The silver enhanced-Lateral Flow ImmunoAssay: strip development based on gold-nanoparticles occurs, followed by the addition of the enhancing solution, which causes the lines to turn black and become more intense, thus increasing detectability.  相似文献   
2.

We have prepared molecularly imprinted beads with molecular recognition capability for target molecules containing the penicillanic acid substructure. They were prepared by (a) grafting mesoporous silica beads with 6-aminopenicillanic acid as the mimic template, (b) filling the pores with a polymerized mixture of methacrylic acid and trimethylolpropane trimethacrylate, and (c) removing the silica support with ammonium fluoride. The resulting imprinted beads showed good molecular recognition capability for various penicillanic species, while antibiotics such as cephalosporins or chloramphenicol were poorly recognized. The imprinted beads were used to extract penicillin V, nafcillin, oxacillin, cloxacillin and dicloxacillin from skimmed and deproteinized milk in the concentration range of 5–100 μg·L−1. The extracts were then analyzed by micellar electrokinetic chromatography by applying reverse polarity staking as an in-capillary preconcentration step, and this resulted in a fast and affordable method within the MRL levels, characterized by minimal pretreatment steps and recoveries of 64–90 %.

Penicillanic acid-imprinted beads prepared in preformed porous silica by an imprinting &; etching approach show selectivity towards β-lactams antibiotics. Molecularly imprinted solid phase extraction/micellar electrokinetic chromatography coupled with in-capillary preconcentration resulted in a fast and affordable method for penicillins in milk at MRL levels.

  相似文献   
3.
We have prepared molecularly imprinted beads with molecular recognition capability for target molecules containing the penicillanic acid substructure. They were prepared by (a) grafting mesoporous silica beads with 6-aminopenicillanic acid as the mimic template, (b) filling the pores with a polymerized mixture of methacrylic acid and trimethylolpropane trimethacrylate, and (c) removing the silica support with ammonium fluoride. The resulting imprinted beads showed good molecular recognition capability for various penicillanic species, while antibiotics such as cephalosporins or chloramphenicol were poorly recognized. The imprinted beads were used to extract penicillin V, nafcillin, oxacillin, cloxacillin and dicloxacillin from skimmed and deproteinized milk in the concentration range of 5–100 μg·L?1. The extracts were then analyzed by micellar electrokinetic chromatography by applying reverse polarity staking as an in-capillary preconcentration step, and this resulted in a fast and affordable method within the MRL levels, characterized by minimal pretreatment steps and recoveries of 64–90 %.
Figure
Penicillanic acid-imprinted beads prepared in preformed porous silica by an imprinting & etching approach show selectivity towards β-lactams antibiotics. Molecularly imprinted solid phase extraction/micellar electrokinetic chromatography coupled with in-capillary preconcentration resulted in a fast and affordable method for penicillins in milk at MRL levels.  相似文献   
4.
In the current paradigm for molecular imprinting, the imprinted binding sites exist as a consequence of the polymerization process around templates, and the properties of nonimprinted polymers (NIPs) have largely been overlooked. Thus, nothing can be affirmed a priori concerning the binding properties of NIPs. We propose an alternative view where the imprinting effect is due to the presence of a template molecule that enhances the pre-existing binding properties of a polymer. If a NIP shows no binding properties toward a target molecule, the corresponding imprinted polymer (MIP) will show a weak imprinting effect. On the other hand, if a NIP shows binding properties toward a target molecule, the corresponding MIP will show a significant imprinting effect. To verify this hypothesis, we prepared a 96-member combinatorial polymeric library in the absence of any template molecule. This library was screened for several potential ligands, and with no exceptions, the composition of the best-binding NIP produced a MIP with excellent binding properties, whereas a low-binding NIP formulation produced a MIP with comparable low binding. To validate these results, the binding properties toward naproxen and ibuprofen were measured for two combinatorial libraries of polymers prepared in the presence (MIP library) and the absence (NIP library) of the template molecule. The experiment's results showed a correlation between the apparent affinity constants measured for the NIP and MIP libraries, confirming the proposed hypothesis. Moreover, for closely related molecules, it was shown that binding selectivity is an emergent property derived from the imprinting process and not a property of NIPs.  相似文献   
5.
The interlaboratory validation of analytical procedures for the assay of urinary 3,5,6-trichloro-2-pyridinol (TCP) in the general Italian population is reported. The determinations were performed by high-resolution gas chromatography (HRGS) with electron capture detection and HRGS with mass spectrometry (MS) in 2 laboratories. The urine samples were from 42 participants from 3 regions of Italy. The results were evaluated by interlaboratory quality control. Urinary TCP concentrations were above the detection limit (1.2 micrograms/L) in 88% of the population, with a mean detectable concentration [GM (GSD)] of 2.8 (1.9) micrograms/g creatinine (creat). (GM, geometric mean; GSD, geometric standard deviation.) The Mann-Whitney U test showed that wine consumption was a statistically significant variable (p < 0.05) for urinary concentrations of TCP. Analysis of variance of the logarithm of urinary TCP versus wine consumption and diet showed a statistically significant fit. The model used explained 30% of the total variance: wine consumption and diet accounted for 37 and 17% respectively of the explained variance.  相似文献   
6.
One of the most interesting methods for preparing molecularly imprinted polymers with controlled morphology consists in filling the pores of silica beads with an imprinting mixture, polymerizing it and dissolving the support, leaving porous imprinted beads that are the "negative image" of the silica beads. The main advantage of such an approach consists in the easy preparation of spherical imprinted polymeric particles with narrow diameter and pore size distribution, particularly indicated for chromatographic applications. In this approach it has been shown that the resulting morphology of polymeric beads depends essentially on the porosity and surface properties of the silica beads that act as microreactors for the thermopolymerization process. Anyway, it is not yet clear if the porosity of the silica beads influences the binding properties of the resulting imprinted beads. In this paper, we report the effect of different porosities of the starting mesoporous silica beads on the resulting binding properties of imprinted polymers with molecular recognition properties towards the fungicide carbendazim. The morphological properties of the imprinted beads prepared through this hierarchical approach were measured by nitrogen adsorption porosimetry and compared with a reference imprinted material prepared by bulk polymerization. The chromatographic behaviour of HPLC columns packed with the imprinted materials were examined by eluting increasing amounts of carbendazim and extracting the binding parameters through a peak profiling approach. The experimental results obtained show that the resulting binding properties of the imprinted beads are strongly affected by the polymerization approach used but not by the initial porosity of the silica beads, with the sole exception of the binding site density, which appears to be inversely proportional to them.  相似文献   
7.
The aim of this study was the evaluation of the binding performances and selectivity of molecularly imprinted beads prepared toward several penicillins (i) by hierarchical bulk polymerization in the pores of template‐grafted silica microbeads (hMIPs) and (ii) by Pickering emulsion polymerization in the presence of template‐decorated silica nanobeads (pMIPs). 6‐Aminopenicillanic acid was chosen as the common fragmental mimic template. Both approaches produced micron‐sized polymeric beads with good recognition properties toward the target ligands whereas the selectivity pattern appeared quite different. The polymer prepared by the Pickering emulsion approach showed binding properties similar to imprinted beads prepared by hierarchical approach. Equilibrium binding constants changed their values from 0.1–0.2 × 106 (hMIPs) to 0.2–0.6 × 106 M?1 (pMIPs), while the binding site densities changed from 3.7–4.8 (hMIPs) to 0.3–0.55 μmol/g (pMIPs). Compared to the hierarchical polymerization, Pickering emulsion polymerization represents a more practical approach when a template mimic needs to be used.  相似文献   
8.
We propose a homogenous multi-analyte immunoassay based on the quenching of quantum dot (QD) fluorescence by means of graphene. Two QDs with emission maxima at 636 and 607 nm were bound to antibodies selective for mouse or chicken immunoglobulins, respectively, and graphene functionalized with carboxylic moieties was employed to covalently link the respective antigen. The antibody-antigen interaction led graphene close enough to QDs to quench the QD fluorescence by resonance energy transfer. The addition of free antigens that competed with those linked to graphene acted as a “turn-on” effect on QD fluorescence. Fluorescence emitted by the two QDs could be recorded simultaneously since the QDs emitted light at different wavelengths while being excited at the same wavelength and proved to be linearly correlated with free antigen concentration. The developed assay allows measuring both antigens over 2–3 orders of magnitude and showed estimated limits of detection in the nanomolar range. This approach is thus a promising universal strategy to develop homogenous immunoassays for diverse antigens (cells, proteins, low-molecular-mass analytes) in a multi-analyte configuration.  相似文献   
9.
A reagent combination of toluenesulfinic acid and trimethylacetyl chloride affords a putative trimethylacetic p-toluenesulfinic anhydride. This reagent has been used to prepare a series of sulfinate esters from primary and secondary alcohols. In addition, the reagent was used to convert Baylis-Hillman substrates into allylic sulfones. Attempts to use the reagent to convert amines to sulfinamides were unsuccessful. In contrast, the use of 2-pyrrolidinone afforded N-p-toluenesulfinyl pyrrolidinone in 64% yield. The use of a chiral 4-benzyl-1,3-oxazolidinone or 4-benzyl-1,3-oxazolidine-2-thione led to the isolation of S-p-tolyl p-toluenethiosulfonate.  相似文献   
10.
In this paper, a site-selective catalytic chemical vapor deposition synthesis of carbon nanotubes on silicon-based substrates has been developed in order to get horizontally oriented nanotubes for field effect transistors and other electronic devices. Properly micro-fabricated silicon oxide and polysilicon structures have been used as substrates. Iron nanoparticles have been obtained both from a thin Fe film evaporated by e-gun and from iron nitrate solutions accurately dispersed on the substrates. Single-walled nanotubes with diameters as small as 1 nm, bridging polysilicon and silicon dioxide “pillars”, have been grown. The morphology and structure of CNTs have been characterized by SEM, AFM and Raman spectroscopy.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号