首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   5篇
数学   1篇
物理学   2篇
  2011年   1篇
  2008年   1篇
  2007年   4篇
  2005年   1篇
  1998年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The structural and adsorption characteristics of polymer adsorbent LiChrolut EN and the behavior of adsorbed water and water/organic mixtures were studied using adsorption, microcalorimetry, transmission and scanning electron microscopy, mass spectrometry, infrared spectroscopy, 1H NMR spectroscopy with layer-by-layer freezing-out of liquids (190-273 K), and thermally stimulated depolarization current method (90-265 K). This adsorbent is characterized by large specific surface area (approximately 1500 m2/g) and pore volume (0.83 cm3/g) with a major contribution of narrow pores (R<10 nm) of a complicated shape (long hysteresis loop is in nitrogen adsorption-desorption isotherm). The adsorbent includes aromatic and aliphatic structures and oxygen-containing functionalities and can effectively adsorb organics and water/organic mixtures. On co-adsorption of water and organics (dimethyl sulfoxide, chloroform, methane), there is a weak influence of one on another adsorbate due to their poor mixing in pores. Weakly polar chloroform displaces a fraction of water from narrow pores. These effects can explain high efficiency of the adsorbent in solid-phase extraction of organics from aqueous solutions. The influence of structural features of several carbon and polymer adsorbents on adsorbed nitrogen, water and water/organics is compared on the basis of the adsorption and 1H NMR data.  相似文献   
2.
Applications of thermally stimulated depolarisation current (TSDC) technique to a variety of systems with different dispersion phases such as disperse and porous metal oxides, polymers, liquid crystals, amorphous and crystalline solids, composites, solid solutions, biomacromolecules, cells, tissues, etc. in gaseous or liquid dispersion media are analysed. The effects of dipolar, direct current (dc) and space charge relaxations are linked to the temperature dependent mobility of molecules, their fragments, protons, anions, and electrons and depend on thermal treatment, temperature and field intensity of polarisation, heating rate on depolarisation or cooling rate on polarisation. Features of the relaxation mechanisms are affected not only by the mentioned factors but also by morphological, structural and chemical characteristics of materials. The interfacial phenomena, especially the role of interfacial water, received significant attention on analysis of the TSDC data. Comparison of the data of TSDC and dielectric relaxation spectroscopy (DRS), differential scanning calorimetry (DSC), 1H NMR spectroscopy with layer-by-layer freezing-out of bulk and interfacial water, adsorption/desorption of nitrogen, water and dissolved organics demonstrates high sensitivity and information content of the TSDC technique, allowing a deeper understanding of interfacial phenomena.  相似文献   
3.
Interaction of poly(vinyl alcohol) (PVA) with fumed silica was investigated in the gas phase and aqueous media using adsorption, broadband dielectric relaxation spectroscopy (DRS), thermally stimulated depolarization current (TSDC), infrared spectroscopy, thermal analysis, and one-pass temperature-programmed desorption (OPTPD) mass-spectrometry (MS) methods. PVA monolayer formation leads to certain textural changes in the system (after suspension and drying) because of strong hydrogen bonding of the polymer molecules to silica nanoparticles preventing strong interaction between silica particles themselves. This strong interaction promotes associative desorption of water molecules at lower temperatures than in the case of silica alone. Interaction of PVA with silica and residual water leads to depression of glass transition temperature (T(g)). There are three types of dipolar relaxations at temperatures lower and higher than the T(g) value. A small amount of adsorbed water leads to significant conductivity with elevating temperature.  相似文献   
4.
5.
Several series of fumed silicas and mixed fumed oxides produced and treated under different conditions were studied in gaseous and liquid media using nitrogen and water adsorption-desorption, mass spectrometry, FTIR, NMR, thermally stimulated depolarization current (TSDC), photon correlation spectroscopy (PCS), zeta potential, potentiometric titration, and Auger electron spectroscopy methods. Aggregation of primary particles and adsorption capacity (Vp) decrease and hysteresis loops of nitrogen adsorption-desorption isotherms becomes shorter with decreasing specific surface area (S(BET)). However, the shape of nitrogen adsorption-desorption isotherms can be assigned to the same type independent of S(BET) value. The main maximum of pore size distribution (gaps between primary nonporous particles in aggregates and agglomerates) shifts toward larger pore size and its intensity decreases with decreasing S(BET) value. The water adsorption increases with increasing S(BET) value; however, the opposite effect is observed for the content of surface hydroxyls (in mmol/m2). Associative desorption of water (2(SiOH)-->SiOSi+H2O) depends on both the morphology and synthesis conditions of fumed silica. The silica dissolution rate increases with increasing S(BET) and pH values. However, surface charge density and the modulus of zeta-potential increase with decreasing S(BET) value. The PCS, 1H NMR, and TSDC spectra demonstrate rearrangement of the fumed silica dispersion depending on the S(BET) value and the silica concentration (C(SiO2)) in the aqueous suspensions. A specific state of the dispersion is observed at the C(SiO2) values corresponding to the bulk density of the initial silica powder.  相似文献   
6.
Fumed oxides SiO2/Al2O3 (SA), SiO2/TiO2 (ST) and Al2O3/SiO2/TiO2 (AST) at different content of alumina and titania were investigated by one-pass temperature-programmed desorption (OPTPD) time-of-flight mass-spectrometry (TOFMS), Auger electron spectroscopy (AES), NMR, FTIR, thermally stimulated depolarization current (TSDC), microcalorimetry, adsorption of nitrogen, water, (dimethylamino)azobenzene (DMAAB) and metal ions (Pb(II) and Ni(II)). It was shown that all the studied adsorption/desorption and energetic properties of mixed fumed oxides depend strongly on the surface content of alumina (shown as a surface content of aluminum, ) in SA and AST and titania (shown as a surface content of titanium, ) in ST and AST. Many of these properties demonstrate clear correlations with the and values over the total range of alumina and titania content in the materials.  相似文献   
7.
A variety of fumed oxides such as silica, alumina, titania, silica/alumina (SA), silica/titania (ST), and alumina/silica/titania (AST) were characterized. These oxides have different specific surface areas and different primary particle composition in the bulk and at the surface. These materials were studied by FTIR, NMR, Auger electron spectroscopy, one-pass temperature-programmed desorption with mass spectrometry control (OP TPDMS), microcalorimetry, and nitrogen adsorption. Nonlinear changes in the surface content of alumina in SA and AST and titania in ST and AST samples with increasing oxide content along with simultaneous changes in their specific surface area cause complex dependencies of the heat of immersion in water and desorption of water on heating on the structural parameters. Simultaneous analysis of changes in the surface phase composition, in the concentration of hydroxyls, and in the structural characteristics reveals that at a low content of the second phase the structural characteristics (e.g., S(BET)) are predominant; however, at a large content of these oxides the phase composition plays a more important role.  相似文献   
8.
Nanosilicas (A-50, A-300, A-500)/activated carbon (AC, SBET = 1520 m2/g) composites were prepared using short-term (5 min) mechanochemical activation (MCA) of powder mixtures in a microbreaker. Smaller silica nanoparticles of A-500 (average diameter dav = 5.5 nm) can more easily penetrate into broad mesopores and macropores of AC microparticles than larger nanoparticles of A-50 (dav = 52.4 nm) or A-300 (dav = 8.1 nm). After MCA of silica/AC, nanopores of non-broken AC nanoparticles remained accessible for adsorbed N2 molecules. According to ultra-soft X-ray emission spectra (USXES), MCA of silica/AC caused formation of chemical bonds Si-O-C; however, Si-C and Si-Si bonds were practically not formed. A decrease in intensity of OKα band in respect to CKα band of silica/AC composites with diminishing sizes of silica nanoparticles is due to both changes in the surface structure of particles and penetration of a greater number of silica nanoparticles into broad pores of AC microparticles and restriction of penetration depth of exciting electron beam into the AC particles.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号