首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   2篇
化学   23篇
晶体学   1篇
数学   1篇
物理学   4篇
  2021年   1篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   5篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  1985年   1篇
排序方式: 共有29条查询结果,搜索用时 234 毫秒
1.
Several new liquid-crystalline indene and pseudoazulene systems are reported. These molecules give rise to either columnar hexagonal mesophases and/or columnar plastic phases. The unique nature of these compounds stems from their non-classical discotic structure. Although the molecules have rigid aromatic cores, they lack terminal tails and instead the polarizable atoms (S, halogens) or polar groups (CN, CO) act as unusual soft parts. On the basis of many structurally related materials, we conclude that for this type of compound molecular stacking in the solid state is a prerequisite for the appearance of a columnar mesophase, although other intermolecular interactions within the layers are also important in establishing liquid-crystalline order. The behavior reported for these mesomorphic molecules opens up new possibilities in the search for related molecular interactions that might be useful for the construction of supramolecular architectures with particular properties.  相似文献   
2.
Indene and cyclopentene enaminonitriles were reacted with SCl2, iBu3N and NCS to give the first cyclopenta[1,2,6]thiadiazines that showed unusual characteristics, one as a NIR dye and another as a liquid crystal.  相似文献   
3.
The present work is aimed at studying the interaction between copper-glycyltyrosine [(Cu(II)-Gly-Tyr)]+ and ninhydrin in water and in micelles formed by cetyltrimethylammonium bromide (CTAB) using spectrophometric measurements at 80°C and pH 5.0. The order of reaction remains the same in the two systems, that is, first- and fractional-order kinetics with respect to [Cu(II)-Gly-Tyr]+ and [ninhydrin], respectively, in the excess of ninhydrin over [Cu(II)-Gly-Tyr]+. It was observed that the product formed is same in both the media. The reaction is catalyzed by CTAB, and the maximum rate enhancement is about three fold. Quantitative kinetic analysis of kψ–[CTAB] data was explained in terms of pseudo-phase of the micelles (assuming the association/incorporation of both the reactants at the micellar surface).  相似文献   
4.
Films (ca. 150 microm thick) of twelve acrylate mixtures, which contained various proportions of hydrocarbon acrylates [mainly oligo(ethylene glycol) diacrylate, (OEGDA)] and small amounts of a silicone hexaacrylate (in proportion of 5% or less), were cured on a nickel substrate, and X-ray photoelectron spectroscopy analysis of the nickel-side surface compositions showed that for formulations with and without the silicone hexaacrylate, this surface was enriched with OEGDA and saturated (up to 50%) with the silicone hexaacrylate, respectively. The silicone hexaacrylate phase-separated and formed micelles which migrated to the resin-nickel interface. Silicone hexaacrylate, inherently less reactive, also significantly slowed the photopolymerization of the mixtures. The sequential homopolymerization of OEGDA and silicone hexaacrylate in a formulation was elicited using real-time Fourier transform infrared spectroscopy. The design-of-experiment approach was used to quantify the influence of the components on gelation time and the nickel-side surface composition as well as provide the statistical models to predict these two properties for new compositions.  相似文献   
5.
The copolymerization of ethylene with 1,3-butadiene was studied with the series of ansa-metallocenes Me2Si(Cp)(9-Flu)ZrCl2 (1), Me2Si(1-Ind)(9-Flu)ZrCl2 (2), and Me2Si(9-Flu)2ZrCl2 (3) with methylaluminoxane (MAO) as cocatalyst. The catalyst 2/MAO yields a cyclocopolymer composed of two ethylene monomer units for every one butadiene in a novel periodic architecture of 1,2-enchained cyclopentane units separated by three methylenes. The high butadiene content in the copolymer and the high selectivity for alternating cyclocopolymerization to form methylene-1,2-cyclopentane units implicate a dual-site mechanism where butadiene and ethylene are enchained at different coordination sites.  相似文献   
6.
A general synthesis of 1,3-dicarbonylic compounds using multicomponent reactions of isocyanides is described. The process involves a Passerini three-component condensation of glyoxal derivatives, isocyanides and acetic acid, followed by metal mediated reductive or solvolytic removal of the acid component. Noteworthy, reductive deacetoxylation of Passerini glyoxylamide adducts was successfully achieved using photochemically activated SmI2. This procedure constitutes a novel convenient method for the direct synthesis of malonic retro-peptidic subunits.  相似文献   
7.
The structure of MeGeI3 is orthorhombic with space groupPnma,a=6.374(3),b=10.412(4),c=12.683(4) Å, andz=4. It has been solved by direct methods and refined by full-matrix least-squares techniques to a conventionalR factor of 0.0791 for 653 unique reflections. The crystal structure contains discrete molecules with mirror symmetry which are separated by normal van der Waals distances. The mean Ge-I distance is 2.500(2) Å.  相似文献   
8.
Donor–acceptor type polymers bearing diketopyrrolopyrrole and 3,4‐ethylenedioxythiophene units are reported. The polymers are green and exhibit very low band‐gaps (1.19 eV) with strong and broad absorption (maxima of about 830 nm) in the near infrared (NIR) region in their neutral film states. The polymers display color changes between dark green and light blue with exceptional optical contrasts in the NIR regions of up to 78 and 63% as thin films and single‐layer electrochromic devices, respectively. Fast switching, good stabilities as well as high coloration efficiencies (743–901 cm2 C?1) were also observed. The polymers could also be potentially used as photovoltaic material, with a power conversion efficiency of up to 1.68%. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1287–1295  相似文献   
9.
Pincer PCP-Pd(II) complex [PdCl(PCP)] (1) (PCP = ?CH(CH2CH2PPh2)2) reacts with AgNO3 to give [Pd(NO3)(PCP)] (2). Similar reaction with AgBF4 gives the aqua complex [Pd(OH2)(PCP)][BF4] (3) and the dinuclear complex [{Pd(PCP)}2(μ-Cl)][BF4] (4) with singly bridging chloro ligand. All new complexes were characterized by NMR spectroscopy, ESI-MS and single-crystal X-ray diffraction. Complex 1 and the triflate complex [Pd(OTf)(PCP)] (5) are active towards Suzuki–Miyaura coupling between aryl bromides and phenyl boronic acid.  相似文献   
10.
Fe/SiO2 particles with core/shell structure were prepared by coating silica on the surface of a commercial spherical carbonyl iron via the hydrolysis process of tetraethyl orthosilicate (TEOS). The electromagnetic performance of commercial carbonyl iron and as-prepared Fe/SiO2 particles was studied theoretically and experimentally. As predicted by the theoretical calculation based on the Bruggeman formula and the LandauLifshitzGilbert (LLG) theory, the insulating surface layer of silica was effective to reduce the permittivity parameters of pure carbonyl iron. The measured results showed good agreement with the theoretical prediction. Although there was a little decrease in the permeability of the Fe/SiO2 core/shell particles, a better impedance match especially at higher frequency range was obtained when used as a microwave absorber. The reflection loss (RL) curves show that the lowest reflection loss of Fe/Epoxy composite (−20.5 GHz) was obtained corresponding to the frequency of 8.5 GHz when the thickness of the absorber was 3 mm. A different trend was observed in Fe/SiO2/Epoxy composite. The reflection loss value got lower by decreasing the thickness of absorbers. At the thickness of 2.2 mm, a relative low reflection loss (−17 GHz) corresponding to the frequency of 13.6 GHz was obtained. Compared with the Fe/Epoxy composite, the improvement on shifting the reflection loss peak to higher frequency and on reducing the optimal thickness of absorbers was made by Fe/SiO2/Epoxy composite.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号