首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   5篇
物理学   1篇
  2019年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
排序方式: 共有6条查询结果,搜索用时 93 毫秒
1
1.
2.
The polymerization of MMA, at ambient temperature, mediated by dansyl chloride is investigated using controlled radical polymerization methods. The solution ATRP results in reasonably controlled polymerization with PDI < 1.3. The SET‐LRP polymerization is less controlled while SET‐RAFT polymerization is controlled producing poly(methyl methacrylate) (PMMA) with the PDI < 1.3. In all the cases, the polymerization rate followed first order kinetics with respect to monomer conversion and the molecular weight of the polymer increased linearly with conversion. The R group in the CTAs do not appear to play a key role in controlling the propagation rate. SET‐RAFT method appears to be a simpler tool to produce methacrylate polymers, under ambient conditions, in comparison with ATRP and SET‐LRP. Fluorescent diblock copolymers, P(MMA‐b‐PhMA), were synthesized. These were highly fluorescent with two distinguishable emission signatures from the dansyl group and the phenanthren‐1‐yl methacrylate block. The fluorescence emission spectra reveal interesting features such as large red shift when compared to the small molecule. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   
3.
A novel initiator containing pyrene, a fluorescent moiety, was prepared by reacting 1-aminopyrene and 2-bromoisobutyl bromide. The structure elucidation of the new initiator was carried out using various spectroscopic tools, as well as through single crystal X-ray diffraction studies. Novel, fluorescent amphiphilic block copolymers with a pyrene end-group, poly(styrene-b-acrylic acid) [P(S-b-AA)], poly(methyl methacrylate-b-dimethylaminoethyl methacrylate) [P(MMA-b-DMAEMA)], poly(styrene-b-tert-butyl acrylate) [P(S-b?t-BA)], poly(styrene-b-dimethylaminoethyl methacrylate) [P(S-b-DMAEMA)] were successfully synthesized by the atom transfer radical polymerization (ATRP) method, using CuBr as the catalyst and N,N,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)/N,N,N′,N″,N″-hexamethyltriethylenetetramine (HMTETA) as the complexing agent. The polymers were characterized by GPC, 1H-NMR, IR and UV-Vis spectroscopies. It was observed that as the polymerization time increased, both the conversion and the molecular weight increased linearly with time. The fluorescence properties of the polymers prepared were recorded. The physical properties and especially the pH dependent swelling properties of the amphiphilic block copolymers have been investigated. The utility of the block copolymers in the formation of stable dispersion of cadmium sulphide nanoparticles was investigated as a model study.  相似文献   
4.
Controlled radical polymerization of cyclohexyl methacrylate (CHMA), at ambient temperature, using various chain transfer agents (CTAs) is successfully demonstrated via single electron transfer‐radical addition fragmentation chain transfer (SET‐RAFT). Well‐controlled polymerization with narrow molecular weight distribution (Mw/Mn) < 1.25 was achieved. The polymerization rate followed first‐order kinetics with respect to monomer conversion, and the molecular weight of the polymer increased linearly up to high conversion. A novel, fluorescein‐based initiator, a novel fluorescent CTA and two other CTAs comprising of butane thiol trithiocarbonate with cyano (CTA 1) and carboxylic acid (CTA 3) as the end group were synthesized and characterized. The polymerization is observed to be uncontrolled under SET and less controlled under atom transfer radical polymerization (ATRP) condition. CTA 2 and 3 produces better control in propagation compared with CTA 1, which may be attributed to the presence of R group that undergoes ready fragmentation to radicals, at ambient temperature. The poly(cyclohexyl methacrylate) [P(CHMA)] prepared through ATRP have higher fluorescence intensity compared with those from SET‐RAFT, which may be attributed to the quenching of fluorescence by the trithiocarbonate and the long hydrocarbon chain. It is observed that block copolymers P(CHMA‐bt‐BMA) produced from P(CHMA) macroinitiators synthesized via SET‐RAFT result in lower polydispersity index in comparison with those synthesized via ATRP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   
5.
The benefits of using the pseudo-binary and pseudo-ternary diffusion couple methods in multicomponent inhomogeneous systems are demonstrated by estimating different types of composition-dependent diffusion coefficients. These are important for understanding the basic atomic mechanism of diffusion and complex compositional evolutions. These were otherwise considered impossible during the last many decades. Without any options previously, sometimes the average values over a composition range of random choice were estimated, which are not the material constants but depend on the composition range and also the end member compositions. The steps and analyses for utilising the pseudo-binary and pseudo-ternary methods are first described in the Ni-Co-Fe-Mo system by producing the ideal diffusion profiles fulfilling the concepts behind these methods. Following, the discussion is extended to the systems related to medium (Ni-Co-Cr) and high (Ni-Co-Fe-Mn-Al) entropy alloys. In fact, this is the first report showing a correct experimental method that should be followed for the estimation of the interdiffusion and intrinsic diffusion coefficients in inhomogeneous high entropy alloys. In the end, the limitations of following these methods because of the generation of non-ideal diffusion profiles are discussed based on experimental results. The steps are also suggested to avoid such complications. These methods are easy to adopt for research engineers. Most importantly, these give an opportunity to validate the data estimated following newly proposed numerical methods by different groups with experimentally estimated diffusion coefficients, which were not possible earlier.  相似文献   
6.
The polymerization of N‐vinylcarbazole (NVK) and carbazole methacrylate (CMA) was carried out using controlled radical polymerization methods such as atom transfer radical polymerization (ATRP), single electron transfer (SET)‐LRP, and single electron transfer initiation followed by reversible addition fragmentation chain transfer (SET‐RAFT). Well‐controlled polymerization with narrow molecular weight distribution (Mw/Mn) < 1.25 was achieved in the case of NVK by high‐temperature ATRP while ambient temperature SET‐RAFT polymerization was relatively slow and controlled. In the case of CMA, SET‐RAFT is found to be more suitable for the ambient temperature polymerization. The polymerization rate followed first order kinetics with respect to monomer conversion and the molecular weight of the polymer increased linearly with conversion. The controlled nature of the polymerization is further demonstrated by the synthesis of diblock copolymers from PNVK and PCMA macroinitiators using a new flavanone‐based methacrylate (FMA) as the second monomer. All the polymers exhibited fluorescence. The excimer bands in the homopolymers of PNVK and PCMA were very broad, which may be attributed to the carbazole–carbazole overlap interaction. The scanning electron microscopy analysis of the block copolymer reveals interesting morphological features. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号