首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The polymerization of N‐vinylcarbazole (NVK) and carbazole methacrylate (CMA) was carried out using controlled radical polymerization methods such as atom transfer radical polymerization (ATRP), single electron transfer (SET)‐LRP, and single electron transfer initiation followed by reversible addition fragmentation chain transfer (SET‐RAFT). Well‐controlled polymerization with narrow molecular weight distribution (Mw/Mn) < 1.25 was achieved in the case of NVK by high‐temperature ATRP while ambient temperature SET‐RAFT polymerization was relatively slow and controlled. In the case of CMA, SET‐RAFT is found to be more suitable for the ambient temperature polymerization. The polymerization rate followed first order kinetics with respect to monomer conversion and the molecular weight of the polymer increased linearly with conversion. The controlled nature of the polymerization is further demonstrated by the synthesis of diblock copolymers from PNVK and PCMA macroinitiators using a new flavanone‐based methacrylate (FMA) as the second monomer. All the polymers exhibited fluorescence. The excimer bands in the homopolymers of PNVK and PCMA were very broad, which may be attributed to the carbazole–carbazole overlap interaction. The scanning electron microscopy analysis of the block copolymer reveals interesting morphological features. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

2.
Controlled radical polymerization of cyclohexyl methacrylate (CHMA), at ambient temperature, using various chain transfer agents (CTAs) is successfully demonstrated via single electron transfer‐radical addition fragmentation chain transfer (SET‐RAFT). Well‐controlled polymerization with narrow molecular weight distribution (Mw/Mn) < 1.25 was achieved. The polymerization rate followed first‐order kinetics with respect to monomer conversion, and the molecular weight of the polymer increased linearly up to high conversion. A novel, fluorescein‐based initiator, a novel fluorescent CTA and two other CTAs comprising of butane thiol trithiocarbonate with cyano (CTA 1) and carboxylic acid (CTA 3) as the end group were synthesized and characterized. The polymerization is observed to be uncontrolled under SET and less controlled under atom transfer radical polymerization (ATRP) condition. CTA 2 and 3 produces better control in propagation compared with CTA 1, which may be attributed to the presence of R group that undergoes ready fragmentation to radicals, at ambient temperature. The poly(cyclohexyl methacrylate) [P(CHMA)] prepared through ATRP have higher fluorescence intensity compared with those from SET‐RAFT, which may be attributed to the quenching of fluorescence by the trithiocarbonate and the long hydrocarbon chain. It is observed that block copolymers P(CHMA‐bt‐BMA) produced from P(CHMA) macroinitiators synthesized via SET‐RAFT result in lower polydispersity index in comparison with those synthesized via ATRP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

3.
4.
In this work, cupric oxide (CuO) or cuprous oxide (Cu2O) was used as the catalyst for the single electron transfer‐reversible addition‐fragmentation chain transfer (SET‐RAFT) polymerization of methyl methacrylate in the presence of ascorbic acid at 25 °C. 2‐Cyanoprop‐2‐yl‐1‐dithionaphthalate (CPDN) was used as the RAFT agent. The polymerization occurred smoothly after an induction period arising from the slow activation of CuO (or Cu2O) and the “initialization” process in RAFT polymerization. The polymerizations conveyed features of “living”/controlled radical polymerizations: linear evolution of number‐average molecular weight with monomer conversion, narrow molecular weight distribution, and high retention of chain end fidelity. From the polymerization profile, it was deduced that the polymerization proceeded via a conjunct mechanism of single electron transfer‐living radical polymerization (SET‐LRP) and RAFT polymerization, wherein CPDN acting as the initiator for SET‐LRP and chain transfer agent for RAFT polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

5.
We report on the controlled‐radical polymerization of the photocleavable o‐nitrobenzyl methacrylate (NBMA) and o‐nitrobenzyl acrylate (NBA) monomers. Atom transfer radical polymerization (ATRP), reversible addition‐fragmentation chain transfer polymerization (RAFT), and nitroxide‐mediated polymerization (NMP) have been evaluated. For all methods used, the acrylate‐type monomer does not polymerize, or polymerizes very slowly in a noncontrolled manner. The methacrylate‐type monomer can be polymerized by RAFT with some degree of control (PDI ∼ 1.5) but leading to molar masses up to 11,000 g/mol only. ATRP proved to be the best method since a controlled‐polymerization was achieved when conversions are limited to 30%. In this case, polymers with molar masses up to 17,000 g/mol and polydispersity index as low as 1.13 have been obtained. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6504–6513, 2009  相似文献   

6.
An azido‐containing functional monomer, 11‐azido‐undecanoyl methacrylate, was successfully polymerized via ambient temperature single electron transfer initiation and propagation through the reversible addition–fragmentation chain transfer (SET‐RAFT) method. The polymerization behavior possessed the characteristics of “living”/controlled radical polymerization. The kinetic plot was first order, and the molecular weight of the polymer increased linearly with the monomer conversion while keeping the relatively narrow molecular weight distribution (Mw/Mn ≤ 1.22). The complete retention of azido group of the resulting polymer was confirmed by 1H NMR and FTIR analysis. Retention of chain functionality was confirmed by chain extension with methyl methacrylate to yield a diblock copolymer. Furthermore, the side‐chain functionalized polymer could be prepared by one‐pot/one‐step technique, which is combination of SET‐RAFT and “click chemistry” methods. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
Isobornyl methacrylate (IBMA), a bulky hydrophobic methacrylate, undergoes very fast polymerization, in bulk, with Cu(I)Br/N,N,N′,N″,N″‐pentamethyldiethylenetriamine (PMDETA)/ethyl‐2‐bromoisobutyrate system, at ambient temperature. IBMA also undergoes a spontaneous initiator‐free polymerization, at ambient temperature, with Cu(I)Br/PMDETA catalytic system in dimethyl sulfoxide–water mixtures. The rate of the polymerization is seen to increase with the water content up to 80 mol % of water. A possible intervention of air in initiation is proposed. The active Cu(0) formed by the disproportionation of Cu(I) species in aqueous medium probably plays a vital role for a possible air‐initiation of IBMA via single electron transfer‐living radical polymerization (SET‐LRP) mechanism. A high tolerance level to water under SET‐LRP conditions is demonstrated. The poly(IBMA) samples obtained exhibit low molecular weight distributions (1.1–1.3). Similar behavior was not observed with other common methacrylates such as methyl methacrylate, t‐butyl methacrylate, cyclohexyl methacrylate, and benzyl methacrylate. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Controlled and very rapid ambient temperature polymerization of tert‐butyl acrylate (tBA) via atom transfer radical polymerization (ATRP) and single electron transfer living radical polymerization (SET‐LRP) conditions is reported. Two initiators, one that would generate a secondary radical and another that would generate a primary radical, upon activation, are used. A very active catalyst CuBr/Me6TREN was found to initiate rapid polymerization whether it was the primary or the secondary initiator. The polymerization was well controlled and very rapid. The initiator that produces secondary initiating site is found to result in more rapid polymerization than the one that produces primary initiating site. To explore the possibility of rapid ambient temperature polymerization through the SET‐LRP mechanism, the polymerization was also carried out in the presence of DMSO. It was found that the polymerization was much faster compared to the bulk ATRP, without loss of control. Styrene was block copolymerized from PtBA macroinitiators and vice versa. In both the cases, block copolymers with controlled molecular weights were obtained. The tBA block of the polymer was selectively hydrolyzed to get amphiphilic block copolymers. This amphiphilic block copolymer was found to be useful in preparing stable cadmium sulfide (CdS) nanoparticulate dispersion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

9.
This work describes the polymerization of the free secondary amine bearing monomer 2,2,6,6‐tetramethylpiperidin‐4‐yl methacrylate (TMPMA) by means of different controlled radical polymerization techniques (ATRP, RAFT, NMP). In particular, reversible addition‐fragmentation chain transfer (RAFT) polymerization enabled a good control at high conversions and a polydispersity index below 1.3, thereby enabling the preparation of well‐defined polymers. Remarkably, the polymerization of the secondary amine bearing methacrylate monomer was not hindered by the presence of the free amine that commonly induces degradation of the RAFT reagent. Subsequent oxidation of the polymer yielded the polyradical poly(2,2,6,6‐tetramethylpiperidinyloxy‐4‐yl methacrylate), which represents a valuable material used in catalysis as well as for modern batteries. The obtained polymers having a molar mass (Mn) of 10,000–20,000 g/mol were used to fabricate well‐defined, radical‐bearing polymer films by inkjet‐ printing. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The amphiphilic heterograft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐(poly(acrylic acid)/polystyrene) (P(MMA‐co‐BIEM)‐g‐(PAA/PS)) were synthesized successfully by the combination of single electron transfer‐living radical polymerization (SET‐LRP), single electron transfer‐nitroxide radical coupling (SET‐NRC), atom transfer radical polymerization (ATRP), and nitroxide‐mediated polymerization (NMP) via the “grafting from” approach. First, the linear polymer backbones poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate) (P(MMA‐co‐BIEM)) were prepared by ATRP of methyl methacrylate (MMA) and 2‐hydroxyethyl methacrylate (HEMA) and subsequent esterification of the hydroxyl groups of the HEMA units with 2‐bromoisobutyryl bromide. Then the graft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐poly(t‐butyl acrylate) (P(MMA‐co‐BIEM)‐g‐PtBA) were prepared by SET‐LRP of t‐butyl acrylate (tBA) at room temperature in the presence of 2,2,6,6‐tetramethylpiperidin‐1‐yloxyl (TEMPO), where the capping efficiency of TEMPO was so high that nearly every TEMPO trapped one polymer radicals formed by SET. Finally, the formed alkoxyamines via SET‐NRC in the main chain were used to initiate NMP of styrene and following selectively cleavage of t‐butyl esters of the PtBA side chains afforded the amphiphilic heterograft copolymers poly(methyl methacrylate‐co‐2‐(2‐bromoisobutyryloxy)ethyl methacrylate)‐graft‐(poly(t‐butyl acrylate)/polystyrene) (P(MMA‐co–BIEM)‐g‐(PtBA/PS)). The self‐assembly behaviors of the amphiphilic heterograft copolymers P(MMA‐co–BIEM)‐g‐(PAA/PS) in aqueous solution were investigated by AFM and DLS, and the results demonstrated that the morphologies of the formed micelles were dependent on the grafting density. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

11.
Polymers containing o‐nitrobenzyl esters are promising for preparation of light sensitive materials. o‐Nitrobenzyl methacrylate has already been polymerized by controlled ATRP or RAFT. Unfortunately, the radical polymerization of o‐nitrobenzyl acrylate (NBA) was not controlled until now due to inhibition and retardation effects coming from the nitro‐aromatic groups. Recent developments in the Single Electron Transfer–Living Radical Polymerization (SET–LRP) provide us an access to control this NBA polymerization and living character of this NBA SET–LRP is demonstrated. Effects of CuBr2 and ligand concentrations, as well as Cu(0) wire length on SET–LRP kinetics are shown presently. A first‐order kinetics with respect to the NBA concentration is observed after one induction period. SET–LRP proceeds with a linear evolution of molecular weight and a narrow distribution. High initiation efficiency close to 1 and high chain‐end functionality (~93%) are reached. Chain extension of poly(o‐nitrobenzyl acrylate) is realized with methyl acrylate (MA) to obtain well defined poly(o‐nitrobenzyl acrylate)‐b‐poly(methyl acrylate) (PNBA‐b‐PMA). Finally, light‐sensitive properties of PNBA are checked upon UV irradiation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2192–2201  相似文献   

12.
Methyl methacrylate (MMA) were successfully polymerized by atom transfer radical polymerization with activator generated by electron transfer (AGET ATRP) using copper or iron wire as the reducing agent at 90°C. Well‐controlled polymerizations were demonstrated using an oxidatively stable iron(III) chloride hexahydrate (FeCl3·6H2O) as the catalyst, ethyl 2‐bromoisobutyrate (EBiB) as the initiator, and tetrabutylammonium bromide (TBABr) or triphenylphosphine as the ligand. The polymerization rate was fast and affected by the amount of catalyst and type of reducing agents. For example, the polymerization rate of bulk AGET ATRP with a molar ratio of [MMA]0/[EBiB]0/[FeCl3·6H2O]0/[TBABr]0 = 500/1/0.5/1 using iron wire (the conversion reaches up to 82.2% after 80 min) as the reducing agent was faster than that using copper wire (the conversion reaches up to 86.1% after 3 h). At the same time, the experimental Mn values of the obtained poly(methyl methacrylate) were consistent with the corresponding theoretical ones, and the Mw/Mn values were narrow (~1.3), showing the typical features of “living”/controlled radical polymerization. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

13.
Single electron transfer‐living radical polymerization (SET‐LRP) provides an excellent tool for the straightforward synthesis of well‐defined macromolecules. Heterogeneous Cu(0)‐ catalysis is employed to synthesize a novel photoresist material with high control over the molecular architecture. Poly(γ‐butyrolactone methacrylate)‐co‐(methyladamantly methacrylate) was synthesized. Kinetic experiments were conducted demonstrating that both monomers, γ‐butyrolactone methacrylate (GBLMA) and methyl adamantly methacrylate (MAMA), are successfully homopolymerized. In both cases polymerization kinetic is of first order and the molecular weights increase linearly with conversion. The choice of a proper solvent was decisive for the SET‐LRP process and organic solvent mixtures were found to be most suitable. Also, the kinetic of the copolymerization of GBLMA and MAMA was investigated. Following first order kinetics in overall monomer consumption and exhibiting a linear relationship between molecular weights and conversion a “living” process was established. This allowed for the straightforward synthesis of well‐defined photoresist polymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2251–2255, 2010  相似文献   

14.
A reversible catalyst immobilization system via self‐assembly of hydrogen bonding between thymine anchored on silica gel support and 2,6‐diaminopyridine functionalized with a catalyst (copper bromide‐N,N,N′,N′‐tetraethyldiethylenetriamine (TEDETA) complex) was developed for the atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA). At elevated temperatures, the hydrogen bonding disassociated and released the catalyst as free small molecules for catalysis, which effectively mediated a living polymerization of MMA, producing PMMA with controlled molecular weight and narrow molecular weight distribution (<1.3). At room temperature, the catalyst assembled on the silica gel support by hydrogen bonding, and thus could be recovered and reused for a second run of ATRP. The recovered catalyst still mediated a living polymerization of MMA with reduced activity (54–64%), but had much improved control of the polymerization. The resulting PMMA had molecular weights very close to theoretical vales. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 22–30, 2004  相似文献   

15.
2‐[(Diphenylphosphino)methyl]pyridine (DPPMP) was successfully used as a bidentate ligand in the iron‐mediated atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with various initiators and solvents. The effect of the catalytic system on ATRP was studied systematically. Most of the polymerizations with DPPMP ligand were well controlled with a linear increase in the number‐average molecular weights (Mn) versus conversion and relatively low molecular weight distributions (Mw/Mn = 1.10–1.3) being observed throughout the reactions, and the measured molecular weights matched the predicted values. Initially added iron(III) bromide improved the controllability of the polymerization reactions in terms of molecular weight control. The ratio of ligand to metal influenced the controllability of ATRP system, and the optimum ratio was found to be 2:1. It was shown that ATRP of MMA with FeX2/DPPMP catalytic system (X = Cl, Br) initiated by 2‐bromopropionitrile (BPN) was controlled more effectively in toluene than in polar solvents. The rate of polymerization increased with increasing the polymerization temperature and the apparent activation energy was calculated to be 56.7 KJ mol?1. In addition, reverse ATRP of MMA was able to be successfully carried out using AIBN in toluene at 80 °C. Polymerization of styrene (St) was found to be controlled well by using the PEBr/FeBr2/DPPMP system in DMF at 110 °C. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2922–2935, 2008  相似文献   

16.
An asymmetric difunctional initiator 2‐phenyl‐2‐[(2,2,6,6 tetramethylpiperidino)oxy] ethyl 2‐bromo propanoate ( 1 ) was used for the synthesis of ABC‐type methyl methacrylate (MMA)‐tert‐butylacrylate (tBA)‐styrene (St) triblock copolymers via a combination of atom transfer radical polymerization (ATRP) and stable free‐radical polymerization (SFRP). The ATRP‐ATRP‐SFRP or SFRP‐ATRP‐ATRP route led to ABC‐type triblock copolymers with controlled molecular weight and moderate polydispersity (Mw/Mn < 1.35). The block copolymers were characterized by gel permeation chromatography and 1H NMR. The retaining chain‐end functionality and the applying halide exchange afforded high blocking efficiency as well as maintained control over entire routes. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2025–2032, 2002  相似文献   

17.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The present article describes the polymerization of methyl methacrylate by SET‐LRP in protic solvent mixtures. Herein, the polymerization process was catalyzed by a straightforward Cu(0)wire/Me6‐TREN catalyst while initiation was obtained by toluenesulfonyl chloride. All experiments were conducted at 50 °C and the living polymerization was demonstrated by kinetic evaluation of the SET‐LRP. The process follows first order kinetic until all monomer is consumed which was typically achieved within 4 h. The molecular weight increased linearly with conversion and the molecular weight distributions were very narrow with Mw/Mn ~ 1.1. Detailed investigations of the polymer samples by MALDI‐TOF confirmed that no termination took place and that the chain end functionality is retained throughout the polymerization process. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2236–2242, 2010  相似文献   

18.
Single electron transfer‐living radical polymerization (SET‐LRP) represents a robust and versatile method for the rapid synthesis of macromolecules with defined architecture. The synthesis of poly(methyl methacrylate) via SET‐LRP in dimethyl sulfoxide (DMSO) by using CCl4 as initiator is demonstrated in this work. Resorting to a rather simple Cu(0)/Me6‐TREN catalyst a method was established that allowed for the straightforward design of well‐defined poly(methyl methacrylate). The reactions were performed at various temperatures (25, 50, 60, and 80 °C) and complete monomer conversion could be achieved. The polymerizations obeyed first order kinetic, the molecular weights increased linearly with conversion and the polymers exhibited narrow molecular weight distributions all indicating the livingness of the process. By providing a small amount of hydrazine to the reaction mixture the polymerization could be conducted in presence of air omitting the need for any elaborated deoxygenation procedures. This methodology offers an elegant way to synthesize functionalized poly(methyl methacrylate) with perfect control over the polymerization process as well as molecular architecture. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2243–2250, 2010  相似文献   

19.
Use of ionic liquids as reaction media was investigated in the design of an environmentally friendly single electron transfer‐living radical polymerization (SET‐LRP) for acrylonitrile (AN) without any ligand by using Fe(0) wire as catalyst and 2‐bromopropionitrile as initiator. 1‐Methylimidazolium acetate ([mim][AT]), 1‐methylimidazolium propionate ([mim][PT]), and 1‐methylimidazolium valerate ([mim][VT]) were applied in this study. First‐order kinetics of polymerization with respect to the monomer concentration, linear increase of the molecular weight, and narrow polydispersity with monomer conversion showed the controlled/living radical polymerization characters. The sequence of the apparent polymerization rate constant of SET‐LRP of AN was kapp ([mim][AT]) > kapp ([mim][PT]) > kapp ([mim][VT]). The living feature of the polymerization was also confirmed by chain extensions of polyacrylonitrile with methyl methacrylate. All three ionic liquids were recycled and reused and had no obvious effect on the controlled/living nature of SET‐LRP of AN. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

20.
A series of well‐defined double hydrophilic graft copolymers containing poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) side chains were synthesized by the combination of single electron transfer‐living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained comb copolymer was treated with lithium diisopropylamide and 2‐bromoisobutyryl bromide to give PPEGMEA‐Br macroinitiator. Finally, PPEGMEA‐g‐PPEGEEMA graft copolymers were synthesized by ATRP of poly(ethylene glycol) ethyl ether methacrylate macromonomer using PPEGMEA‐Br macroinitiator via the grafting‐from route. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept narrow (Mw/Mn ≤ 1.20). This kind of double hydrophilic copolymer was found to be stimuli‐responsive to both temperature and ion (0.3 M Cl? and SO). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 647–655, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号