首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学   15篇
  2020年   1篇
  2019年   3篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2004年   1篇
排序方式: 共有15条查询结果,搜索用时 109 毫秒
1.
Russian Chemical Bulletin - The study is concerned with structural rearrangements in the crystals of heterospin complexes Cu(hfac)2 with nitroxide radicals LR (hfac is hexafluoroacetylacetonate, LR...  相似文献   
2.
3.
4.
The synthesis, structures, and magnetochemical data for the heterospin chain polymer complexes Cu(hfac)2LAll and Cu(hfac)2LBu·0.5Solv, where hfac is the hexafluoroacetylacetonate anion, LAll and LBu are 2-(1-allyl-1H-pyrazol-4-yl)- and 2-(1-butyl-1H-pyrazol-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyls, respectively, Solv is isopropylbenzene or tert-butylbenzene, were described. These polycrystalline solids were found to exhibit similar magnetic anomalies. Thus, the effective magnetic moment first decreases and then increases with temperature, resulting in the specific minimum in the curve μeff(T). The study of the magneto-structural correlations showed that the appearance of the minimum is attributed to different factors. For Cu(hfac)2LAll, this is the phase transition accompanied by the structural rearrangement of the exchange cluster >N—·O—CuII—O·—N<, which leads to a change in the energy of the exchange interaction between the unpaired electrons of the paramagnetic centers. By contrast, for Cu(hfac)2LBu·0.5PriPh and Cu(hfac)2LBu·0.5ButPh, the appearance of the minimum is a consequence of the coexistence of exchange interaction energies with opposite signs, while the structure of the solid phase remains unchanged.  相似文献   
5.
A method was developed for the synthesis of a nitronyl nitroxide containing cyclopentane substituents in positions 4 and 5 of the imidazoline ring, viz., 2-(3-pyridyl)-4,5-bis(spiropentyl)-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl (LCP). The reaction of CuII hexafluoroacetylacetonate with LCP affords different products depending on the reaction conditions: mononuclear [Cu(hfac)2(LCP)2], binuclear [Cu(hfac)2LCP]2, tetranuclear {[Cu(hfac)2]4(LCP)2}, or chain polymer {[Cu(hfac)2]3(LCP)2} n . Temperature changes induce structural transformations accompanied by a change in the spin state in exchange clusters in the solid [Cu(hfac)2LCP]2 and {[Cu(hfac)2]4(LCP)2}.  相似文献   
6.
Thermally induced spin transitions in a family of heterospin polymer chain complexes of Cu2+ hexafluoroacetylacetonate with two pyrazole-substituted nitronyl nitroxides are studied using electron paramagnetic resonance (EPR) spectroscopy. The structural rearrangements at low temperatures induce spin transitions in exchange-coupled spin triads of nitroxide-copper(II)-nitroxide. The values of exchange interactions in spin triads of studied systems are typically on the order of tens to hundreds of inverse centimeters. The large magnitude of exchange interaction determines the specific and very informative peculiarities in EPR spectra due to the predominant population of the ground state of a spin triad and spin exchange processes. The variety of these manifestations depending on structure and magnetic properties of spin triads are described. EPR is demonstrated as an efficient tool for the characterization of spin transitions and for obtaining information on the temperature-dependent sign and value of the exchange interaction in strongly coupled spin triads.  相似文献   
7.
The temperature dependence of the heat capacity of a polycrystalline sample of the heterospin solvate [Cu(hfac)2L]·0.5[1,4-(CF3)2C6H4] (L is 2-(1-butyl-1H-pyrazol-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide 1-oxyl) was studied in the range of 5–298 K. The results of the thermochemical study of this compound were shown to be in agreement with the data from magnetochemical and diffraction measurements providing evidence that, as the temperature changes, the complex undergoes phase transitions at 59 and 123 K.  相似文献   
8.
Exchange-coupled spin triads nitroxide-copper(II)-nitroxide are the key building blocks of molecular magnets Cu(hfac)(2)L(R). These compounds exhibit thermally induced structural rearrangements and spin transitions, where the exchange interaction between spins of copper(II) ion and nitroxide radicals changes typically by 1 order of magnitude. We have shown previously that electron paramagnetic resonance (EPR) spectroscopy is sensitive to the observed magnetic anomalies and provides information on both inter- and intracluster exchange interactions. The value of intracluster exchange interaction is temperature-dependent (J(T)), that can be accessed by monitoring the effective g-factor of the spin triad as a function of temperature (g(eff)(T)). This paper describes approaches for studying the g(eff)(T) and J(T) dependences and establishes correlations between them. The experimentally obtained g(eff)(T) dependences are interpreted using three different models for the mechanism of structural rearrangements on the molecular level leading to different meanings of the J(T) function. The contributions from these mechanisms and their manifestations in X-ray, magnetic susceptibility and EPR data are discussed.  相似文献   
9.
We succeeded in synthesizing a new high-spin complex [Fe2(CN)12Ni3(L)6]·27H2O, where L is stable nitroxide 2-(imidazol-4-yl)-4,4,5,5-tetramethyl-2-imidazoline-3-oxide-1-oxyl. According to X-ray diffraction data, the metal core of the pentanuclear [Fe2(CN)12Ni3(L)6] molecule is a trigonal bipyramid with Fe atoms occupying the axial positions and linked via CN bridges to {NiL2} fragments laying in the equatorial plane. A peculiarity of this coordination compound is a large number of water molecules per the [Fe2(CN)12Ni3(L)6] pentanuclear molecule in the structure. The complex character of the μeff(T) dependence points to many competing channels of exchange interactions between the three types of paramagnetic centers.  相似文献   
10.
A new group of "breathing" crystals has been synthesized. These are aromatic solvates of the copper(II) hexafluoroacetylacetonate complex with spin-labeled pyrazole Cu(hfac)(2)L·0.5Solv, where L is 2-(1-butyl-1H-pyrazol-4-yl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazole-3-oxide-1-oxyl and Solv is benzene, toluene, ethylbenzene, propylbenzene, butylbenzene, styrene, o-xylene, m-xylene, p-xylene, 1,4-bis(trifluoromethyl)benzene, 1-methyl-4-ethylbenzene, 1-methyl-4-vinylbenzene, 1,4-diethylbenzene, 1,2,3-trimethylbenzene, or 1,2,4-trimethylbenzene. The main feature of Cu(hfac)(2)L·0.5Solv single crystals is their remarkable mechanical stability and ability to undergo thermally induced structural rearrangements accompanied by spin-crossover-like phenomena. The structures of Cu(hfac)(2)L·0.5Solv solvates are similar and based on mutually parallel {Cu(hfac)(2)L}(∞) heterospin chains with a "head-to-head" motif. The localization of voids with guest molecules being the same in all crystals, the temperature dependence of the effective magnetic moment (μ(eff)) for Cu(hfac)(2)L·0.5Solv is determined by the structure of the guest molecules, along which the polymer chains are "gliding" when the temperature changes. When the temperature decreased from 300 to 100-50 K, μ(eff) decreased, abruptly or gradually, from 2.7-2.4 to ~1.8 β for the majority of Cu(hfac)(2)L·0.5Solv except the solvates with benzene, toluene, and 1,4-bis(trifluoromethyl)benzene. When Cu(hfac)(2)L·0.5C(6)H(6) and Cu(hfac)(2)L·0.5CH(3)-C(6)H(5) were cooled to 50 K, μ(eff) decreased to ~2.1-2.2 β. When Cu(hfac)(2)L·0.5(1,4-(CF(3))(2)-C(6)H(4)) was cooled to 50 K, μ(eff) initially decreased from ~2.7 to 1.9 β and then abruptly increased to ~2.4 β. A single-crystal X-ray diffraction analysis of each solvate within a temperature range wider than the range of magnetic anomaly temperatures revealed a complex interrelated dynamics of the aromatic solvent guest molecules and heterospin chains. The dynamics largely depended on the orientation of the solvent guest molecules relative to the polymer chains. An analysis of the thermally induced phase transformations revealed a relationship between the structural rearrangement of Cu(hfac)(2)L·0.5Solv and the form of the magnetic anomaly on the μ(eff)(T) curve and between the structural rearrangement of the solvate and the temperature of the magnetic effect.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号