首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   3篇
化学   21篇
力学   3篇
数学   35篇
物理学   10篇
  2019年   1篇
  2017年   1篇
  2016年   4篇
  2015年   2篇
  2014年   1篇
  2013年   9篇
  2012年   14篇
  2011年   8篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   3篇
  2002年   1篇
  2001年   2篇
排序方式: 共有69条查询结果,搜索用时 46 毫秒
1.
2.
In this work, we study the existence, uniqueness, and exponential asymptotic behavior of mild solutions to stochastic integrodifferential delay evolution equations. We assume that the non-delay part generates a C0-semigroup.  相似文献   
3.
We study the asymptotic behavior of weak solutions to the stochastic 3D Navier-Stokes-α model as α approaches zero. The main result provides a new construction of the weak solutions of stochastic 3D Navier-Stokes equations as approximations by sequences of solutions of the stochastic 3D Navier-Stokes-α model.  相似文献   
4.
Study of effective behavior of heterogeneous materials, starting from the properties of the microstructure, represents a critical step in the design and modeling of new materials. Within this framework, the aim of this work is to introduce a general internal variables approach for scale transition problem in linear viscoelastic case. A new integral formulation is established, based on the complete taking into account of field equations and differential constitutive laws of the heterogeneous problem, in which the effects of elasticity and viscosity interact in a representative volume element. Thanks to Green’s techniques applied to space convolution’s term, a new concentration relation is obtained. The step of homogenization is then carried out according to the self-consistent approximation. The results of the present model are illustrated and compared with those provided by Hashin’s and Rougier’s ones, considered as references, and by internal variables models such as those of Weng and translated fields.  相似文献   
5.
This work deals with the global existence of weak solutions for a Kazhikhov–Smagulov type system with a density which may or not vanish. Our model is formally equivalent to the physical compressible model with Fick’s law, in contrast to those in previous works. This model may be used for addressing environmental problems such as propagation of pollutants and avalanche modelling. We also explain why this system may be seen as a physical regularization of the standard nonhomogeneous incompressible Navier–Stokes equations and we give an existence result with an initial density less regular but away from the vacuum.  相似文献   
6.
7.
We derive a consistent approach for predicting the solvation free energies of charged solutes in the presence of implicit and explicit solvents. We find that some published methodologies make systematic errors in the computed free energies because of the incorrect accounting of the standard state corrections for water molecules or water clusters present in the thermodynamic cycle. This problem can be avoided by using the same standard state for each species involved in the reaction under consideration. We analyze two different thermodynamic cycles for calculating the solvation free energies of ionic solutes: (1) the cluster cycle with an n water cluster as a reagent and (2) the monomer cycle with n distinct water molecules as reagents. The use of the cluster cycle gives solvation free energies that are in excellent agreement with the experimental values obtained from studies of ion-water clusters. The mean absolute errors are 0.8 kcal/mol for H(+) and 2.0 kcal/mol for Cu(2+). Conversely, calculations using the monomer cycle lead to mean absolute errors that are >10 kcal/mol for H(+) and >30 kcal/mol for Cu(2+). The presence of hydrogen-bonded clusters of similar size on the left- and right-hand sides of the reaction cycle results in the cancellation of the systematic errors in the calculated free energies. Using the cluster cycle with 1 solvation shell leads to errors of 5 kcal/mol for H(+) (6 waters) and 27 kcal/mol for Cu(2+) (6 waters), whereas using 2 solvation shells leads to accuracies of 2 kcal/mol for Cu(2+) (18 waters) and 1 kcal/mol for H(+) (10 waters).  相似文献   
8.
We give a new characterization of character-automorphic Hardy spaces of order 2 and of their contractive multipliers in terms of de Branges Rovnyak spaces. Keys tools in our arguments are analytic extension and a factorization result for matrix-valued analytic functions due to Leech.   相似文献   
9.
We investigate a stochastic evolution equation for the motion of a second grade fluid filling a bounded domain of R2R2. Global existence and uniqueness of strong probabilistic solution is established. In contrast to previous results on this model we show that the sequence of Galerkin approximation converges in mean square to the exact strong probabilistic solution of the problem. We also give two results on the long time behavior of the solution. Mainly we prove that the strong solution of our stochastic model converges exponentially in mean square to the stationary solution of the time-independent second grade fluids equations if the deterministic part of the external force does not depend on time. If the deterministic forcing term explicitly depends on time, then the strong probabilistic solution decays exponentially in mean square.  相似文献   
10.
Homogenization of a stochastic nonlinear reaction–diffusion equation with a large nonlinear term is considered. Under a general Besicovitch almost periodicity assumption on the coefficients of the equation we prove that the sequence of solutions of the said problem converges in probability towards the solution of a rather different type of equation, namely, the stochastic nonlinear convection–diffusion equation which we explicitly derive in terms of appropriate functionals. We study some particular cases such as the periodic framework, and many others. This is achieved under a suitable generalized concept of Σ-convergence for stochastic processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号