首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   149篇
  免费   12篇
  国内免费   6篇
化学   70篇
晶体学   6篇
力学   6篇
数学   52篇
物理学   33篇
  2021年   1篇
  2020年   5篇
  2019年   3篇
  2018年   1篇
  2017年   4篇
  2016年   12篇
  2015年   4篇
  2014年   5篇
  2013年   19篇
  2012年   15篇
  2011年   11篇
  2010年   7篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2005年   6篇
  2004年   5篇
  2003年   1篇
  2002年   2篇
  2001年   5篇
  1999年   4篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1992年   2篇
  1990年   1篇
  1985年   2篇
  1984年   3篇
  1983年   4篇
  1981年   2篇
  1980年   3篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1939年   3篇
  1866年   2篇
排序方式: 共有167条查询结果,搜索用时 15 毫秒
1.
The study of water quality and the quantification of reserves and their variations according to natural and anthropogenic forcing is necessary to establish an adequate management plan for groundwater resources. For this purpose, a modeling approach is a useful tool that allows, after calibration phase and verification of simulation, and under different scenarios of forcing and operational changes, to estimate and control the groundwater quantity and quality. The main objective of this study is to collect all available data in a model that simulates the Jeffara of Medenine coastal aquifer system functioning. To achieve this goal, a conceptual model was constructed based on previous studies and hydrogeological investigations. The regional groundwater numerical flow model for the Jeffara aquifer was developed using MODFLOW working under steady-state and transient conditions. Groundwater elevations measured from the piezometric wells distributed throughout the study area in 1973 were selected as the target water levels for steady state (head) model calibration. A transient simulation was undertaken for the 42 years from 1973 to 2015. The historical transient model calibration was satisfactory, consistent with the continuous piezometric decline in response to the increase in groundwater abstraction. The developed numerical model was used to study the system's behavior over the next 35 years under various constraints. Two scenarios for potential groundwater extraction for the period 2015–2050 are presented. The predictive simulations show the effect of the increase of the exploitation on the piezometric levels. To study the phenomenon of salinization, which is one of the most severe and widespread groundwater contamination problems, especially in coastal regions, a solute transport model has been constructed by using MT3DMS software coupled with the groundwater flow model. The best calibration results are obtained when the connection with the overlying superficial aquifer is considered suggesting that groundwater contamination originates from this aquifer. Recommendations for water resource managers
  • The results of this study show that Groundwater resources of Jeffara of Medenine coastal aquifer in Tunisia are under immense pressure from multiple stresses.
  • The water resources manager must consider the impact of economic and demographic development in groundwater management to avoid the intrusion of saline water.
  • The results obtained presented some reference information that can serve as a basis for water resources planning.
  • The model runs to provide information that managers can use to regulate and adequately control the Jeffara of Medenine water resources.
  相似文献   
2.
3.
The paper presents a semi‐implicit algorithm for solving an unsteady fluid–structure interaction problem. The algorithm for solving numerically the fluid–structure interaction problems was obtained by combining the backward Euler scheme with a semi‐implicit treatment of the convection term for the Navier–Stokes equations and an implicit centered scheme for the structure equations. The structure is governed either by the linear elasticity or by the non‐linear St Venant–Kirchhoff elasticity models. At each time step, the position of the interface is predicted in an explicit way. Then, an optimization problem must be solved, such that the continuity of the velocity as well as the continuity of the stress hold at the interface. During the Broyden, Fletcher, Goldforb, Shano (BFGS) iterations for solving the optimization problem, the fluid mesh does not move, which reduces the computational effort. The term ‘semi‐implicit’ used for the fully algorithm means that the interface position is computed explicitly, while the displacement of the structure, velocity and the pressure of the fluid are computed implicitly. Numerical results are presented. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
4.
Differential scanning calorimetry on the two-component system of dioctadecyldimethylammonium chloride (DOAC)–water was carried out in the temperature region from 80 °C down to -100 °C. As the result, a new type of glassy state was found around at -40 °C for the supercooled complete gel phase.  相似文献   
5.
6.
7.
In this work, we study the existence, uniqueness, and exponential asymptotic behavior of mild solutions to stochastic integrodifferential delay evolution equations. We assume that the non-delay part generates a C0-semigroup.  相似文献   
8.
The search for more biocompatible alternatives to Gd3+‐based MRI agents, and the interest in 52Mn for PET imaging call for ligands that form inert Mn2+ chelates. Given the labile nature of Mn2+, high inertness is challenging to achieve. The strongly preorganized structure of the 2,4‐pyridyl‐disubstituted bispidol ligand L1 endows its Mn2+ complex with exceptional kinetic inertness. Indeed, MnL1 did not show any dissociation for 140 days in the presence of 50 equiv. of Zn2+ (37 °C, pH 6), while recently reported potential MRI agents MnPyC3A and MnPC2A‐EA have dissociation half‐lives of 0.285 h and 54.4 h under similar conditions. In addition, the relaxivity of MnL1 (4.28 mm ?1 s?1 at 25 °C, 20 MHz) is remarkable for a monohydrated, small Mn2+ chelate. In vivo MRI experiments in mice and determination of the tissue Mn content evidence rapid renal clearance of MnL1. Additionally, L1 could be radiolabeled with 52Mn and the complex revealed good stability in biological media.  相似文献   
9.
Study of effective behavior of heterogeneous materials, starting from the properties of the microstructure, represents a critical step in the design and modeling of new materials. Within this framework, the aim of this work is to introduce a general internal variables approach for scale transition problem in linear viscoelastic case. A new integral formulation is established, based on the complete taking into account of field equations and differential constitutive laws of the heterogeneous problem, in which the effects of elasticity and viscosity interact in a representative volume element. Thanks to Green’s techniques applied to space convolution’s term, a new concentration relation is obtained. The step of homogenization is then carried out according to the self-consistent approximation. The results of the present model are illustrated and compared with those provided by Hashin’s and Rougier’s ones, considered as references, and by internal variables models such as those of Weng and translated fields.  相似文献   
10.
We study the asymptotic behavior of weak solutions to the stochastic 3D Navier-Stokes-α model as α approaches zero. The main result provides a new construction of the weak solutions of stochastic 3D Navier-Stokes equations as approximations by sequences of solutions of the stochastic 3D Navier-Stokes-α model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号