首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   19篇
  国内免费   1篇
化学   122篇
力学   1篇
综合类   1篇
数学   11篇
物理学   26篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   12篇
  2011年   9篇
  2010年   4篇
  2009年   3篇
  2008年   9篇
  2007年   9篇
  2006年   9篇
  2005年   9篇
  2004年   6篇
  2003年   9篇
  2002年   7篇
  2001年   13篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   3篇
  1996年   4篇
  1995年   1篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   6篇
  1988年   1篇
  1987年   4篇
  1985年   1篇
  1983年   2篇
  1978年   1篇
  1977年   1篇
  1967年   1篇
  1961年   2篇
排序方式: 共有161条查询结果,搜索用时 15 毫秒
1.
This paper reports that the growth of RuOx(110) thin layer growth on Ru(0001) has been investigated by means of scanning tunnelling microscope (STM). The STM images showed a domain structure with three rotational domains of RuOx(110) rotated by an angle of 120℃. The as-grown RuOx(110) thin layer is expanded from the bulk-truncated RuOx(110) due to the large mismatch between RuOx(110) and the Ru(0001) substrate. The results also indicate that growth of RuOx(110) thin layer on the Ru(0001) substrate by oxidation tends first to formation of the Ru-O (oxygen) chains in the [001] direction of RuOx(110).  相似文献   
2.
A novel indium silicate, Rb3In(H2O)Si5O13, has been synthesized using a high-temperature, high-pressure hydrothermal method and characterized by single-crystal X-ray diffraction. The structure consists of five-membered rings of corner-sharing SiO4 tetrahedra connected via corner sharing to four adjacent five-membered rings to form a 3D silicate framework that belongs to the CdSO4 topological type. The InO6 octahedron shares five of its corners with five different SiO4 tetrahedra to form a 3D frame-work that delimits two types of channels to accommodate the rubidium cations. The sixth corner of InO6 is coordinated H2O. The structure is related to that of the titanium silicate ETS-10, and these are the only two metal silicates that have the CdSO4-topological-type structure. In addition, the crystal of Rb3In(H2O)Si5O13 shows an intense second harmonic generation signal. Crystal data: H2Rb3InSi5O14, monoclinic, space group Cc (No. 9), a = 9.0697(5) A, b = 11.5456(6) A, c = 13.9266(8) A, beta = 102.300(1) degrees, V = 1424.8(1) A3, and Z = 4.  相似文献   
3.
Solutions are presented herein of some contact problems connected with the torsion of a composite half-space. In the general case the problem of the torsion of a composite elastic half-space is examined by means of the rotation of a stiff finite cylinder welded into a vertical recess of this half-space. Moreover, the following particular problems on the torsion of such a half-space are considered.

1. 1) A composite half-space with a vertical elastic infinite core, twisted by means of the rotation of a stiff stamp affixed to the upper endplate of the elastic core.

2. 2) A half-space with a vertical cylindrical infinite hole, twisted by means of the rotation of a stiff finite cylinder welded into the upper part of this hole.

In the general case the solution of the problem reduces to the solution of an integral equation of the second kind on a half-line. The question of the solvability of this fundamental integral equation is investigated, and it is shown that its solution may be constructed by successive approximations.

Let us note that the problem of the torsion of a homogeneous half space and of an elastic layer by means of rotation of a stiff stamp has been considered by Rostovtsev [1], Reissner and Sagoci [2], Ufliand [3], Florence [4], Grilitskii [5] and others.

The problem of the torsion of a circular cylindrical rod and the half-space welded to it which are subject to a torque applied to the free endface of the rod has been considered by Grilitskii and Kizyma[6].

The torsion of an elastic half-space with a vertical cylindrical inclusion of some other material by the rotation of a stiff stamp on the surface of this half-space has been considered in [7], wherein it has been assumed that the stamp is symmetrically disposed relative to the axis of the inclusion and lies simultaneously on both materials.  相似文献   

4.
Jiang YC  Wang SL  Lee SF  Lii KH 《Inorganic chemistry》2003,42(20):6154-6156
Two new layered transition metal oxalatophosphates, (H(3)TREN)[M(2)(HPO(4))(C(2)O(4))(2.5)].3H(2)O (M = Mn(II) and Fe(II)), have been synthesized by hydrothermal methods in the presence of a structure-directing organic amine, tris(2-aminoethyl)amine, and characterized by single-crystal X-ray diffraction and magnetic susceptibility. They are the first metal oxalatophosphates which adopt a two-dimensional honeycomb structure with the organic cations and water molecules intercalated in between. Within a layer, there are 12-membered pores made from 6 Mn, 1 phosphate, and 5 oxalate units. Measurements of field dependence of magnetization and variable-temperature susceptibilities under different fields were performed on a polycrystalline sample of the manganese compound. The results indicate a phase transition from a paramagnetic to an antiferromagnetic coupled state at about 12 K. Crystal data for the manganese compound follow: triclinic, space group Ponemacr; (No. 2), a = 8.8385(6) A, b = 9.0586(6) A, c = 16.020(1) A, alpha = 77.616(1) degrees, beta = 83.359(1) degrees, gamma = 68.251(1) degrees, and Z = 2. Crystal data for the iron compound are the same as those for the manganese compound except a = 8.7776(9) A, b = 8.9257(9) A, c = 15.884(2) A, alpha = 78.630(2) degrees, beta = 84.018(2) degrees, and gamma = 67.372(2) degrees.  相似文献   
5.
The crystal structures of hydrate (1) and anhydrate (2) forms of 2,3-pentamethylene-3,4-dihydroquinazolin-4-one hydrochloride have been determined by X-ray structure analysis. Crystal data of 1 are 2(C13H14N2O)*3(HCl)*4.5 (H2O), triclinic P?1, Z=2, a=8.004(5), b=13.129(7), c=15.725(7) Å, α=106.45(4), β=92.61(4), γ=97.98(5), R=0.0652 and 2 are C13H14N2O*HCl, monoclinic C2/c, Z=8, a=21.360(4), b=5.954(1), c=21.263(4), β=117.89(3), R=0.0556. The crystal of the hydrate form 1is unstable. This form collapses easily with evaporation of H2O and part of HCl molecules from crystals. By recrystallizing destroyed form has been obtained stable crystal form 2.  相似文献   
6.
Crystals of two alkali-metal tin(IV) arsenates, KSnOAsO4 and RbSnOAsO4, were grown from a flux and structurally characterized by single-crystal X-ray diffraction. Crystal data: RSnOAsO4, orthorhombic, Pna21 (No. 33), a = 13.406(3) Å, b = 6.678(1) Å, c = 10.921(2) Å, Z = 8, R = 0.037 for 1173 independent reflections with I > 2.5ó(l); RbSnOAsO4, as above except a = 13.567(3) Å, b = 6.791( 1) Å, c = 10.891(2) Å, R = 0.035 for 1958 independent reflections. The two compounds are isostructural with the nonlinear optical material KTiOPO4. The oxygen frameworks of both tin compounds approximate closely to a centrosymmetric arrangement, as indicated from the analysis of atomic coordinates. Second harmonics were generated in powdered RbSnOAsO4 to confirm the absence of a center of symmetry in the structure.  相似文献   
7.
Huang LH  Kao HM  Lii KH 《Inorganic chemistry》2002,41(11):2936-2940
A novel vanadium(V) phosphate and the arsenate analogue, [(VO(2))(2)(4,4'-bpy)(0.5)(4,4'-Hbpy)(XO(4))].H(2)O (X = P, As; bpy = bipyridine), have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. They are the first structurally characterized compounds in the vanadium(V)/4,4'-bpy/phosphate (or arsenate) systems. The two compounds are isostructural and crystallize in the triclinic space group P macro (No. 2) with a = 7.9063(3) A, b = 10.2201(4) A, c = 12.1336(5) A, alpha = 113.4652(7) degrees, beta = 95.7231(7) degrees, gamma = 94.4447(7) degrees, and Z = 2 for the phosphate, and a = 7.8843(6) A, b = 10.3686(7) A, c = 12.2606(9) A, alpha = 113.464(1) degrees, beta = 95.560(1) degrees, gamma = 94.585(1) degrees, and Z = 2 for the arsenate. The structure consists of phosphate-bridged vanadium(V) double chains linked through 4,4'-bpy ligands to form a sheet with the monoprotonated 4,4'-Hbpy(+) ligand being coordinated to the metal atom as a pendent group. The (1)H MAS NMR spectrum exhibits four resonances at 14.2, 9.5, 7.2, and 3.7 ppm with an intensity ratio close to 1:6:6:2, corresponding to three different types of protons in 4,4'-bpy and 4,4'-Hbpy(+) and one type of protons in H(2)O. The peak at 14.2 ppm can be assigned to the proton bonded to the pyridine nitrogen atom, which confirms the presence of 4,4'-Hbpy(+).  相似文献   
8.
Two new mixed metal cluster complexes PtRu3(CO)10(PPh3)(3-S)2,3 14% yield and PtRu3(CO)9(PPh3)2(3-S)2,4 23% yield were obtained from the reaction of Ru3(CO)9(3-S)2,1 with Pt(PPh3)2(C2H4) at 0°C. The cluster of4 consists of a spiked triangle of four metal atoms with two triply bridging sulfido ligands. The reaction of Ru4(CO)11(4-S)2,2 with Pt(PPh3)2(C2H4) yielded the expanded mixed-metal cluster complex PtRu4(CO)12(PPh3)(4-S)2,5 in 12% yield. The structure of the cluster5 can be described as a pentagonal bipyramid of five metal atoms and two sulfido ligands with one metal-metal bond missing. Compounds4 and5 were characterized by a single-crystal X-ray diffraction analyses.  相似文献   
9.
Wang CM  Liao CH  Lin HM  Lii KH 《Inorganic chemistry》2004,43(26):8239-8241
The synthesis and characterization of a novel mixed-valent uranium oxyfluoride is described; the inorganic network consists of 2-D [U(2)F(10)](2)(-) sheets constructed from corner- and edge-sharing U(IV)F(9) tricapped trigonal prisms and 1-D [UO(2)F(3)](-) chains constructed from edge-sharing U(VI)O(2)F(5) pentagonal bipyramids with the organic cations and water molecules between the sheets. This is the first example with a hybrid network structure in the system of uranium fluoride or oxyfluoride. The variable-temperature magnetic susceptibility confirms the oxidation state of the uranium ions. Crystal data follow: C(6)H(25)N(4)O(4)F(13)U(3), monoclinic, space group P2(1) (No. 4); a = 8.6876(4) A, b = 7.3158(4) A, c = 16.3376(8) A, beta = 93.7285(9) degrees , V = 1036.2(2) A(3), and Z = 2.  相似文献   
10.
The MM3 force field has been extended to deal with the lithium amide molecules that are widely used as efficient catalysts for stereoselective asymmetric synthesis. The MM3 force field parameters have been determined on the basis of the ab initio MP2/6-31G* and/or DFT (B3LYP/6-31G*, B3-PW91/6-31G*) geometry optimization calculations. To evaluate the electronic interactions specific to the lithium amides derived from the diamine molecules properly, the Lewis bonding potential term for the interaction between the lithium atom and the nonbonded adjacent electronegative atom such as nitrogen was introduced into the MM3 force field. The bond dipoles were evaluated correctly from the electronic charges on the atoms calculated by fitting to the electrostatic potential at points selected. The MM3 results on the molecular structures, conformational energies, and vibrational spectra show good agreement with those from the quantum mechanical calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号