首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   4篇
化学   65篇
晶体学   1篇
数学   3篇
物理学   19篇
  2022年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   4篇
  2012年   14篇
  2011年   10篇
  2009年   3篇
  2008年   10篇
  2007年   13篇
  2006年   6篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   2篇
  1984年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
1.
The first direct transmission electron microscopic (TEM) observation has been carried out on the continuous monocrystal-thick b-oriented pure silica zeolite MFI films produced by in situ crystallization. The self-supporting film samples for TEM study were fabricated by dissolving the steel substrate with acid. This TEM study is free of those artifacts that are typically associated with TEM sample preparations, and allows us to investigate the "true" structure and texture of a very large area of the film and at the same time to focus at will on each individual zeolite crystal in the film. Abundant TEM information including crystallographic orientation relationships among crystals in the film (both out-of-plane and in-plane), grain boundaries, and each crystal grain was obtained. This TEM investigation provides direct unambiguous new evidence to support the homogeneous nucleation mechanism, by which the films form through homogeneous nucleation and crystal growth in the bulk to form equal-sized disk-shape crystals, followed by self-assembly of these crystals onto the substrate to produce a two-dimensional close-packed structure. The last stage of the film formation involves simultaneous space-limited growth and rotation of the individual crystals to realize the in-plane crystallographic control within the film.  相似文献   
2.
The entire sequence of crystallization events, starting with formation of the initial organic-cation-free gel, proceeding through the zeolite nucleation stage, and finishing with complete transformation into LTA-type zeolite crystals, has been monitored by means of high-resolution transmission electron microscopy. Formation and development of voids, containing highly hydrated material transformed later into negative crystals, has been discovered in the solid part of the system. The evolution of these areas has been found to be an integral and noteworthy part of the chemical transformation of the gel that preceded the nucleation in the system. These void structures and, in particular, their solid-liquid interfaces have been identified as the specific locations where the formation of protozeolite nuclei took place. Further development of the system followed the classical for zeolite-yielding systems of crystallization that could be described by the autocatalytic model.  相似文献   
3.
A colloidal particle adsorbed at a fluid interface could have an undulated, or irregular contact line in the presence of surface roughness and/or chemical inhomogeneity. The contact-line undulations produce distortions in the surrounding liquid interface, whose overlap engenders capillary interaction between the particles. The convex and concave local deviations of the meniscus shape from planarity can be formally treated as positive and negative "capillary charges," which form "capillary multipoles." Here, we derive theoretical expressions for the interaction between two capillary multipoles of arbitrary order. Depending on the angle of mutual orientation, the interaction energy could exhibit a minimum, or it could represent a monotonic attraction. For undulation amplitudes larger than 5 nm, the interaction energy is typically much greater than the thermal energy kT. As a consequence, a monolayer from capillary multipoles exhibits considerable shear elasticity, and such monolayer is expected to behave as a two-dimensional elastic solid. These theoretical results could be helpful for the understanding of phenomena related to aggregation and ordering of particles adsorbed at a fluid interface, and for the interpretation of rheological properties of particulate monolayers. Related research fields are the particle-stabilized (Pickering) emulsions and the two-dimensional self-assembly of microscopic particles.  相似文献   
4.
The slow motion of a liquid droplet in a shear flow in the presence of surfactants is studied. The effects of the interfacial viscosity, Gibbs elasticity, surface diffusion and bulk diffusion of surfactants in both phases are taken into account. The analytical solution of the problem for small Reynolds and Peclet numbers gives a simple criterion for estimation of the tangential mobility of the droplet interface. By applying the standard procedure for averaging of the stress tensor flux at an arbitrary surface of the dilute emulsion, an analytical formula for the viscosity of emulsions in the presence of surfactants is derived. The result is a natural generalization of the well-known formula of Einstein for the viscosity of monodisperse dilute suspensions and of the expressions derived by Taylor and Oldroyd for the viscosity of monodisperse dilute emulsions taking into account the Marangoni effect. Copyright 2001 Academic Press.  相似文献   
5.
6.
7.
The principle aspects and constraints of the dynamics and kinetics of zeolite nucleation in hydrogel systems are analyzed on the basis of a model Na‐rich aluminosilicate system. A detailed time‐series EMT‐type zeolite crystallization study in the model hydrogel system was performed to elucidate the topological and temporal aspects of zeolite nucleation. A comprehensive set of analytical tools and methods was employed to analyze the gel evolution and complement the primary methods of transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR) spectroscopy. TEM tomography reveals that the initial gel particles exhibit a core–shell structure. Zeolite nucleation is topologically limited to this shell structure and the kinetics of nucleation is controlled by the shell integrity. The induction period extends to the moment when the shell is consumed and the bulk solution can react with the core of the gel particles. These new findings, in particular the importance of the gel particle shell in zeolite nucleation, can be used to control the growth process and properties of zeolites formed in hydrogels.  相似文献   
8.
Zeolites are widely used in many commercial processes, mostly as catalysts or adsorbents. Understanding their intimate structure at the nanoscale is the key to control their properties and design the best materials for their ever increasing uses. Herein, we report a new and controllable fluoride treatment for the non‐discriminate extraction of zeolite framework cations. This sheds new light on the sub‐structure of commercially relevant zeolite crystals: they are segmented along defect zones exposing numerous nanometer‐sized crystalline domains, separated by low‐angle boundaries, in what were apparent single‐crystals. The concentration, morphology, and distribution of such domains analyzed by electron tomography indicate that this is a common phenomenon in zeolites, independent of their structure and chemical composition. This is a milestone to better understand their growth mechanism and rationally design superior catalysts and adsorbents.  相似文献   
9.
Here, we investigate experimentally and theoretically the motion of spherical glass particles of radii 240-310 microm attached to a tetradecane-water interface. Pairs of particles, which are moving toward each other under the action of lateral capillary force, are observed by optical microscopy. The purpose is to check whether the particle electric charges influence the particle motion, and whether an electric-field-induced capillary attraction could be detected. The particles have been hydrophobized by using two different procedures, which allow one to prepare charged and uncharged particles. To quantify the hydrodynamic viscous effects, we developed a semiempirical quantitative approach, whose validity was verified by control experiments with uncharged particles. An appropriate trajectory function was defined, which should increase linearly with time if the particle motion is driven solely by the gravity-induced capillary force. The analysis of the experimental results evidences for the existence of an additional attraction between two like-charged particles at the oil-water interface. This attraction exceeds the direct electrostatic repulsion between the two particles and leads to a noticeable acceleration of their motion.  相似文献   
10.
An investigation of a He–SrCl2 vapor laser excited by Blumlein discharge circuit is performed. Dependences of laser output power on the working parameters are obtained by experiment. The optimal operating parameters for lasing on several strontium atom and ion lines are found. The multi-line average output power of 1.32 W and the power specific of 12.46 mW/cm3 are achieved, of which more than 78.1% is concentrated at the 6.45 μm laser line.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号