首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2023年   1篇
  2019年   4篇
  2018年   1篇
  1993年   1篇
排序方式: 共有7条查询结果,搜索用时 78 毫秒
1
1.
Recently, pure organic thermally activated delayed fluorescence (TADF) emitters have attracted considerable interest from the scientific community in the field of organic light emitting diodes (OLEDs) as they can theoretically realize 100 % of the internal quantum efficiency by exploiting both the singlet and triplet excitons via the reverse intersystem crossing enabled by small singlet‐triplet energy splitting. Currently, the external quantum efficiency of the TADF emitters is reaching the level of phosphorescent emitters. Therefore, the TADF approach is considered as a potential alternative to the low efficiency conventional fluorescent and expensive phosphorescent emitters. In this account, we summarized our recent development of blue and green TADF molecular designs to improve the device performances of the TADF devices.  相似文献   
2.
Summary The natural decay of Fe(phen) f3 p3+ , where no CeIV is employed for scavenging the side reaction product, Fe(phen) f3 p2+ , is now treated as a complex reaction involving two parallel processes, and the experimental kinetics are consistent with the rate laws derived from a mechanism that simultaneously explains the composition of the products as a function of acidity. In terms of the proposed mechanism the dissociation rate of the complex ion in acid solutions containing CeIV as scavenging agent is to be regarded as a CeIV retarded aquation rate, and OH is to be assigned a catalytic role in the kinetics of basic reduction.  相似文献   
3.
Since their first demonstration, thermally activated delayed fluorescence (TADF) materials have been emerged as the most promising emitters because of their promising applications in optoelectronics, typified by organic light-emitting diodes (OLEDs). In which, the rigid oxygen bridged boron acceptor-featured ( DOBNA ) emitters have gained tremendous impetus for OLEDs, which is ascribed to their excellent external quantum efficiency (EQE). However, these materials often displayed severe efficiency roll-off and poor operational stability. Therefore, there needs to be a comprehensive understanding of the aspect of the molecular design and structure-property relationship. To the best of our knowledge, there is no detailed review on the structure-function outlook of DOBNA -based emitters emphasizing the effect of the nature of donor units, their number density, and substitution pattern on the physicochemical properties, excited state dynamics and OLED performance were reported. To fill this gap, herein we presented the recent advancements in DOBNA -based acceptor featured TADF materials by classifying them into several subgroups based on the molecular design i. e. donor-acceptor (D−A), D−A-D, A−D-A, and multi-resonant TADF (MR-TADF) emitters. The detailed design concepts, along with their respective physicochemical and OLED performances were summarized. Finally, the prospective of this class of materials in forthcoming OLED displays is also discussed.  相似文献   
4.
In this study, two new dibenzofuran derivatives featuring one or two cyanocarbazole units, 6‐(dibenzo[b,d]furan‐4‐yl)‐9‐phenyl‐9H‐carbazole‐3‐carbonitrile ( mBFCzCN) and 6,6′‐(dibenzo[b,d]furan‐4,6‐diyl)bis(9‐phenyl‐9H‐carbazole‐3‐carbonitrile) ( dBFCzCN ), were developed as host materials for phosphorescent organic light emitting diodes (PhOLEDs). A new molecular design connecting the cyanocarbazole to the dibenzofuran using the cyanocarbazole 6‐position instead of its 9‐position was created, and the effects of number of cyanocarbazole units in the dibenzofuran building block on the photophysical and electroluminescence properties were investigated in detail. The mBFCzCN compound revealed high triplet energy (2.78 eV) than that of dBFCzCN (2.68 eV) and good bipolar charge transporting properties. The potential of these materials as hosts for blue and green PhOLEDs was investigated using bis(4,6‐(difluorophenyl)pyridinato‐N,C2′)picolinate iridium(III) (FIrpic) and tris(2‐phenylpyridinato)iridium(III) (Ir(ppy)3) dopants, respectively. The results indicated that the mBFCzCN with one cyanocarbazole unit showed better device performance than the dBFCzCN with two cyanocarbazole units in the blue and green devices. High external quantum efficiencies of 19.0 and 21.2 % were demonstrated in the blue and green PhOLEDs with the mBFCzCN host due to its high triplet energy and good bipolar charge transporting characteristics.  相似文献   
5.
A new total synthesis of [R]‐Patulolide A from readily available (R)‐propylene epoxide obtained using the asymmetric synthetic approach is reported. The key reactions involved are ozonolysis and Yamaguchi macrolactonization, resulting in the ring system.  相似文献   
6.
Establishment of the structure–property relationships of thermally activated delayed fluorescence (TADF) materials has become a significant quest for the scientific community. Herein, two new donors, 10H‐benzofuro[3,2‐b]indole (BFI) and 10H‐benzo[4,5]thieno[3,2‐b]indole (BTI), have been developed and integrated with a aryltriazine acceptor to design the green TADF emitters benzofuro[3,2‐b]indol‐10‐yl)‐5‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)benzonitrile ( BFICNTrz ) and 2‐(10H‐benzo[4,5]thieno[3,2‐b]indol‐10‐yl)‐5‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)benzonitrile ( BTICNTrz ), respectively. The physicochemical and electroluminescence properties of the compounds were tuned by exchanging the heteroatom in the donor scaffold. Intriguingly, the electronegativity of the heteroatom and the ionization potential of the donor unit played vital roles in control of the singlet–triplet energy splitting and TADF mechanism of the compounds. Both compounds showed similar singlet excited states that originated from the charge transfer (CT) states (1CT), whereas the triplet excited states were tuned by the heteroatom in the donor unit. The origin of phosphorescence in the BTICNTrz emitter was CT emission from the triplet state (3CT), whereas that in the BFICNTrz emitter stemmed from the local triplet excited state (3LE). Consequently, BTICNTrz showed a small singlet–triplet energy splitting of 0.08 eV, compared with 0.26 eV for BFICNTrz . Thus, BTICNTrz showed efficient delayed fluorescence with a high quantum yield and a short delayed exciton lifetime, whereas BFICNTrz displayed weak delayed fluorescence with a relatively long lifetime. Furthermore, a BTICNTrz ‐based device exhibited a maximum external quantum efficiency (EQE) of 15.2 % and reduced efficiency roll‐off (12 %) compared with its BFICNTrz ‐based counterpart, which showed a maximum EQE of 6.4 % and severe efficiency roll‐off (55 %) at a practical brightness range of 1000 cd m?2. These results demonstrate that the choice of subunit plays a vital role in the design of efficient TADF emitters.  相似文献   
7.

A series of novel 2-(2-cyanophenyl)-N-phenylacetamide derivatives 3(a-u) were designed and synthesized via selective amidation of methyl-2-(2-cyanophenyl)acetates over amidine formation by using AlMe3 as catalyst in good yields. All the newly synthesized derivatives were well characterized by 1H NMR, 13C NMR, FTIR and HRMS spectral techniques. All the synthesized title compounds were evaluated for their in vitro anticancer activity against three cancer cell lines. Among all compounds, 3i (IC50?=?1.20 μM, IC50?=?1.10 μM), 3j (IC50?=?0.11 μM, IC50?=?0.18 μM), 3o (IC50?=?0.98 μM, IC50?=?2.76 μM) showed excellent inhibitory activity than the standard Etoposide (IC50?=?2.11 μM, IC50?=?3.08 μM) against MCF-7 and A-549 cell lines, respectively. Docking analysis of all the compounds with the human topoisomerase II revealed that the compound 3j fitted well in the active site pocket, showing the best docking score of 158.072 kcal/mol.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号