首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
A new family of thermally activated delayed fluorescence (TADF) emitters based on U‐shaped D‐A‐D architecture with a novel accepting unit has been developed. All investigated compounds have small singlet‐triplet energy splitting (ΔEST) ranging from 0.02 to 0.20 eV and showed efficient TADF properties. The lowest triplet state of the acceptor unit plays the key role in the TADF mechanism. OLEDs fabricated with these TADF emitters achieved excellent efficiencies up to 16 % external quantum efficiency (EQE).  相似文献   

2.
A family of organic emitters with a donor–σ–acceptor (D‐σ‐A) motif is presented. Owing to the weakly coupled D‐σ‐A intramolecular charge‐transfer state, a transition from the localized excited triplet state (3LE) and charge‐transfer triplet state (3CT) to the charge‐transfer singlet state (1CT) occurred with a small activation energy and high photoluminescence quantum efficiency. Two thermally activated delayed fluorescence (TADF) components were identified, one of which has a very short lifetime of 200–400 ns and the other a longer TADF lifetime of the order of microseconds. In particular, the two D‐σ‐A materials presented strong blue emission with TADF properties in toluene. These results will shed light on the molecular design of new TADF emitters with short delayed lifetimes.  相似文献   

3.
A series of green butterfly‐shaped thermally activated delayed fluorescence (TADF) emitters, namely PXZPM , PXZMePM , and PXZPhPM , are developed by integrating an electron‐donor (D) phenoxazine unit and electron‐acceptor (A) 2‐substituted pyrimidine moiety into one molecule via a phenyl‐bridge π linkage to form a D –π–A–π–D configuration. Changing the substituent at pyrimidine unit in these emitters can finely tune their emissive characteristics, thermal properties, and energy gaps between the singlet and triplet states while maintaining frontier molecular orbital levels, and thereby optimizing their optoelectronic properties. Employing these TADF emitters results in a green fluorescent organic light‐emitting diode (OLED) that exhibits a peak forward‐viewing external quantum efficiency (EQE) close to 25 % and a slow efficiency roll‐off characteristic at high luminance.  相似文献   

4.
Clusters combine the advantages of organic molecules and inorganic nanomaterials, which are promising alternatives for optoelectronic applications. Nonetheless, recently emerged cluster light-emitting diodes require further excited state optimization of cluster emitters, especially to reduce population of the cluster-centered triplet quenching state (3CC). Here we report that redox-active ligands enhance reverse intersystem crossing (RISC) of Cu4I4 cluster for triplet-to-singlet conversion, and thermally activated delayed fluorescence (TADF) host can provide an external RISC channel. It indicates that the complementarity between TADF host and cluster in RISC transitions gives rise to 100 % triplet conversion efficiency and complete singlet exciton convergence, rendering 100-fold increased singlet radiation rate constant and tenfold decreased triplet non-radiation rate constant. We achieve a photoluminescence quantum yield of 99 % and a record external quantum efficiency of 29.4 %.  相似文献   

5.
Pure organic molecules based thermally activated delayed fluorescence (TADF) emitters have been successfully developed in recent years for their propitious application in highly efficient organic light emitting diodes (OLEDs). In the case of orange red emitters, the non-radiative process is known to be a serious issue due to its lower lying singlet energy level. However, recent studies indicate that there are tremendous efforts put to develop efficient orange red TADF emitters. In addition, the external quantum efficiency (EQE) of heteroaromatic based orange red TADF OLEDs surpassed 30 %. Such heteroaromatic type emitters showed wide emission spectra; therefore, more attention is being paid to develop highly efficient orange red TADF emitters along with good color purity. Herein, the recent progress of orange red TADF emitters based on molecular structures, such as cyanobenzene, heteroaromatic, naphthalimide, and boron-based acceptors, are reviewed. Further, our insight on these acceptors has been provided by their photophysical studies and device performances. Future perspectives of orange red TADF emitters for real practical applications are discussed.  相似文献   

6.
Much effort has been devoted to developing highly efficient organic light‐emitting diodes (OLEDs) that function through phosphorescence or thermally activated delayed fluorescence (TADF). However, efficient host materials for blue TADF and phosphorescent guest emitters are limited because of their requirement of high triplet energy levels. Herein, we report the rigid acceptor unit benzimidazobenzothiazole (BID‐BT), which is suitable for use in bipolar hosts in blue OLEDs. The designed host materials, based on BID‐BT, possess high triplet energy and bipolar carrier transport ability. Both blue TADF and phosphorescent OLEDs containing BID‐BT‐based derivatives exhibit external quantum efficiencies as high as 20 %, indicating that these hosts allow efficient triplet exciton confinement appropriate for blue TADF and phosphorescent guest emitters.  相似文献   

7.
Highly efficient solution-processable emitters are greatly desired to develop low-cost organic light-emitting diodes (OLEDs). The recently developed thermally activated delayed fluorescence (TADF) materials are promising candidates, but blue TADF materials compatible with the all-solution-process have still not been achieved. Here, a series of TADF materials, named X-4CzCN, are developed by introducing the bulky units through an unconjugated linker, which realizes high molecular weight to enhance the solvent resistance ability without disturbing the blue TADF feature. Meanwhile, the peripheral wrapping groups efficiently inhibit the triplet–triplet and triplet–polaron quenching by isolating the energy-transfer and charge-transporting channels. The photophysical measurements indicate that a small variation in peripheral unit will have a noticeable effect on the luminescence efficiency. The enlarged volume of peripheral units will make the electroluminescent spectra blueshift, while enhancing the energy transfer of exciplex and blocking the energy leakage of electromer can facilitate the exciton utilization. As a result, the fully solution-processed blue OLED achieves a CIE of (0.16, 0.27), a low turn on voltage of 2.9 eV, and a high external quantum efficiency of 20.6 %. As far as we known, this is the first report of all-solution-processed TADF OLEDs with blue emission, which exhibits a high efficiency even comparable to the vacuum-deposited devices.  相似文献   

8.
Blue thermally activated delayed fluorescence (TADF) emitters that can simultaneously achieve high efficiency in doped and nondoped organic light‐emitting diodes (OLEDs) are rarely reported. Reported here is a strategy using a tri‐spiral donor for such versatile blue TADF emitters. Impressively, by simply extending the nonconjugated fragment and molecular length, aggregation‐caused emission quenching (ACQ) can be greatly alleviated to achieve as high as a 90 % horizontal orientation dipole ratio and external quantum efficiencies (EQEs) of up to 33.3 % in doped and 20.0 % in nondoped sky‐blue TADF‐OLEDs. More fascinatingly, a high‐efficiency purely organic white OLED with an outstanding EQE of up to 22.8 % was also achieved by employing TspiroS‐TRZ as a blue emitter and an assistant host. This compound is the first blue TADF emitter that can simultaneously achieve high electroluminescence (EL) efficiency in doped, nondoped sky‐blue, and white TADF‐OLEDs.  相似文献   

9.
Thermally activated delayed fluorescent (TADF) materials generally suffer from severe concentration quenching. Efficient non‐doped TADF emitters are generally highly twisted aromatic amine‐based compounds with isolated chemical moieties. Herein we demonstrate that co‐facial packing and strong π–π intermolecular interactions give rise to bright TADF emissions in non‐doped film and crystalline states within the compound 2,4‐diphenyl‐6‐(thianthren‐1‐yl)‐1,3,5‐triazine (oTE‐DRZ). Quantum chemistry simulations indicate that a disperse outer orbital of sulfur atoms, a folded thianthrene plane (for a reduced donor–acceptor distance), and a triazine acceptor with n–π* character, generate a spatially conjugated transition with a small singlet–triplet splitting energy. In company with a highly emissive non‐doped film, the corresponding organic light‐emitting diode achieved a 20.6 % external quantum efficiency, verifying its potential for high‐performance optoelectronic applications. In a crystalline state, it was verified that intra‐ and intermolecular dual TADF assisted by a hidden room‐temperature phosphorescent state. This state could preserve the long‐lived excitons while suppressing non‐radiation, and it could serve as a “spring‐board” for cascade up‐conversion processes. The oTE‐DRZ crystal showed greenish‐blue emission with a very high photoluminescent quantum yield of approximately 87 %, which is the highest among all TADF crystals reported to date.  相似文献   

10.
The emission manners of organic light-emitting diodes(OLEDs) have experienced almost three-decade evolution.In this review,we briefly summarized the emission manners of OLEDs including:(ⅰ) emission from singlet exciton;(ⅱ) emission from triplet exciton;(ⅲ) emission from singlet exciton converted from triplet exciton.Then we introduced a new type of OLEDs with the emission from doublet exciton,wherein organic neutral radicals are used as emitters.Due to the spin-allowed transition of doublet excitons,using neutral radicals as emitters is believed to be a new way to break the 25%upper limit of internal quantum efficiency of OLEDs.The progress of emissive stable neutral radicals is also shortly reviewed.  相似文献   

11.
Significant efforts have been made to develop high‐efficiency organic light‐emitting diodes (OLEDs) employing thermally activated delayed fluorescence (TADF) emitters with blue, green, yellow, and orange–red colors. However, efficient TADF materials with colors ranging from red, to deep‐red, to near‐infrared (NIR) have been rarely reported owing to the difficulty in molecular design. Herein, we report the first NIR TADF molecule TPA‐DCPP (TPA=triphenylamine; DCPP=2,3‐dicyanopyrazino phenanthrene) which has a small singlet–triplet splitting (ΔEST) of 0.13 eV. Its nondoped OLED device exhibits a maximum external quantum efficiency (EQE) of 2.1 % with a Commission International de L′Éclairage (CIE) coordinate of (0.70, 0.29). Moreover, an extremely high EQE of nearly 10 % with an emission band at λ=668 nm has been achieved in the doped device, which is comparable to the most‐efficient deep‐red/NIR phosphorescent OLEDs with similar electroluminescent spectra.  相似文献   

12.
Establishment of the structure–property relationships of thermally activated delayed fluorescence (TADF) materials has become a significant quest for the scientific community. Herein, two new donors, 10H‐benzofuro[3,2‐b]indole (BFI) and 10H‐benzo[4,5]thieno[3,2‐b]indole (BTI), have been developed and integrated with a aryltriazine acceptor to design the green TADF emitters benzofuro[3,2‐b]indol‐10‐yl)‐5‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)benzonitrile ( BFICNTrz ) and 2‐(10H‐benzo[4,5]thieno[3,2‐b]indol‐10‐yl)‐5‐(4,6‐diphenyl‐1,3,5‐triazin‐2‐yl)benzonitrile ( BTICNTrz ), respectively. The physicochemical and electroluminescence properties of the compounds were tuned by exchanging the heteroatom in the donor scaffold. Intriguingly, the electronegativity of the heteroatom and the ionization potential of the donor unit played vital roles in control of the singlet–triplet energy splitting and TADF mechanism of the compounds. Both compounds showed similar singlet excited states that originated from the charge transfer (CT) states (1CT), whereas the triplet excited states were tuned by the heteroatom in the donor unit. The origin of phosphorescence in the BTICNTrz emitter was CT emission from the triplet state (3CT), whereas that in the BFICNTrz emitter stemmed from the local triplet excited state (3LE). Consequently, BTICNTrz showed a small singlet–triplet energy splitting of 0.08 eV, compared with 0.26 eV for BFICNTrz . Thus, BTICNTrz showed efficient delayed fluorescence with a high quantum yield and a short delayed exciton lifetime, whereas BFICNTrz displayed weak delayed fluorescence with a relatively long lifetime. Furthermore, a BTICNTrz ‐based device exhibited a maximum external quantum efficiency (EQE) of 15.2 % and reduced efficiency roll‐off (12 %) compared with its BFICNTrz ‐based counterpart, which showed a maximum EQE of 6.4 % and severe efficiency roll‐off (55 %) at a practical brightness range of 1000 cd m?2. These results demonstrate that the choice of subunit plays a vital role in the design of efficient TADF emitters.  相似文献   

13.
14.
Thermally activated delayed fluorescence (TADF)‐based organic light‐emitting diodes (OLEDs) have attracted enormous attention recently due to their capability to replace conventional phosphorescent organic light‐emitting diodes for practical applications. In this work, a newly designed CN‐substituted imidazopyrazine moiety was utilized as an electron‐accepting unit in a TADF emitter. Two TADF emitters, 8‐(3‐cyano‐4‐(9,9‐dimethylacridin‐10(9H)‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (Ac‐CNImPyr) and 8‐(3‐cyano‐4‐(10H‐phenoxazin‐10‐yl)phenyl)‐2‐phenylimidazo[1,2‐a]pyrazine‐3‐carbonitrile (PXZ‐CNImPyr), were developed based on the CN‐substituted imidazopyrazine acceptor combined with acridine and phenoxazine donor, respectively. A CN‐substituted phenyl spacer was introduced between the donor and acceptor for a sufficiently small singlet‐triplet energy gap (ΔEST) and molecular orbital management. Small ΔEST of 0.07 eV was achieved for the phenoxazine donor‐based PXZ‐CNImPyr emitter. As a result, an organic light‐emitting diode based on the PXZ‐CNImPyr emitter exhibited a high external quantum efficiency of up to 12.7 %, which surpassed the EQE limit of common fluorescent emitters. Hence, the CN‐modified imidazopyrazine unit can be introduced as a new acceptor for further modifications to develop efficient TADF‐based OLEDs.  相似文献   

15.
The mechanism behind reverse intersystem crossing (rISC) in metal-based TADF emitters is still under debate. Thermal rISC necessitates small singlet/triplet energy gaps as realized in donor-acceptor systems with charge-transfer excited states. However, their associated spin-orbit couplings are too small to account for effective rISC. Here, we report the first nonadiabatic dynamics simulation of the rISC process in a carbene-copper(I)-carbazolyl TADF emitter. Efficient rISC on a picosecond time scale is demonstrated for an initial triplet minimum geometry that exhibits a perpendicular orientation of the ligands. The dynamics involves an intermediate higher-lying triplet state of metal-to-ligand charge transfer character (3MLCT), which enables large spin-orbit couplings with the lowest singlet charge transfer state. The mechanism is completed in the S1 state, where the complex can return to a co-planar coordination geometry that presents high fluorescence efficiency.  相似文献   

16.
Multiresonant thermally activated delayed fluorescence (MR-TADF) compounds are attractive as emitters for organic light-emitting diodes (OLEDs) as they can simultaneously harvest both singlet and triplet excitons to produce light in the device and show very narrow emission spectra, which translates to excellent color purity. Here, we report the first example of an MR-TADF emitter (DOBDiKTa) that fuses together fragments from the two major classes of MR-TADF compounds, those containing boron (DOBNA) and those containing carbonyl groups (DiKTa) as acceptor fragments in the MR-TADF skeleton. The resulting molecular design, this compound shows desirable narrowband pure blue emission and efficient TADF character. The co-host OLED with DOBDiKTa as the emitter showed a maximum external quantum efficiency (EQEmax) of 17.4 %, an efficiency roll-off of 32 % at 100 cd m−2, and Commission Internationale de l’Éclairage (CIE) coordinates of (0.14, 0.12). Compared to DOBNA and DiKTa, DOBDiKTa shows higher device efficiency with reduced efficiency roll-off while maintaining a high color purity, which demonstrates the promise of the proposed molecular design.  相似文献   

17.
Doubly boron-doped thermally activated delayed fluorescence (TADF) emitters based on a 9,10-diboraanthracene (DBA) acceptor decorated with ortho-donor groups (Cz2oDBA, 2 ; BuCz2oDBA, 3 ; DMAC2oDBA, 4 ) are prepared to realize high-efficiency green-to-red organic light-emitting diodes (OLEDs). X-ray diffraction analyses of 2 and 4 reveal the symmetrical and highly twisted ortho-donor–acceptor–donor (D-A-D) structure of the emitters. The twisted conformation leads to a very small energy splitting (ΔEST <0.08 eV) between the excited singlet and triplet states that gives rise to strong TADF, as supported by theoretical studies. Depending on the strength of the donor moieties, the emission color is fine-tuned in the visible region from green ( 2 ) to yellow ( 3 ) to red ( 4 ). Carbazole-containing 2 and 3 exhibit high photoluminescence quantum yields (PLQYs) approaching 100 %, whereas DMAC-substituted 4 is moderately emissive (PLQY=44 %) in a doped host film. Highly efficient green-to-red TADF-OLEDs are realized with the proposed ortho-D-A-D compounds as emitters. The green and yellow OLEDs incorporating Cz2oDBA ( 2 ) and BuCz2oDBA ( 3 ) emitters exhibit high external quantum efficiencies (EQEs) of 26.6 % and 21.6 %, respectively. In particular, the green device shows an excellent power efficiency above 100 lm W−1. A red OLED fabricated with a DMAC2oDBA ( 4 ) emitter exhibits a maximum EQE of 10.1 % with an electroluminescence peak at 615 nm.  相似文献   

18.
Metal-based thermally activated delayed fluorescence (TADF) is conceived to inherit the advantages of both phosphorescent metal complexes and purely organic TADF compounds for high-performance electroluminescence. Herein a panel of new TADF Au(I) emitters has been designed and synthesized by using carbazole and pyrazine-fused nitrogen-heterocyclic carbene (NHC) as the donor and acceptor ligands, respectively. Single-crystal X-ray structures show linear molecular shape and coplanar arrangement of the donor and acceptor with small dihedral angles of <6.5°. The coplanar orientation and appropriate separation of the HOMO and LUMO in this type of molecules favour the formation of charge-transfer excited state with appreciable oscillator strength. Together with a minor but essential heavy atom effect of Au ion, the complexes in doped films exhibit highly efficient (Φ∼0.9) and short-lived (<1 μs) green emissions via TADF. Computational studies on this class of emitters have been performed to decipher the key reverse intersystem crossing (RISC) pathway. In addition to a small energy splitting between the lowest singlet and triplet excited states (ΔEST), the spin-orbit coupling (SOC) effect is found to be larger at a specific torsion angle between the donor and acceptor planes which favours the RISC process the most. This work provides an alternative molecular design to TADF Au(I) carbene emitters for OLED application.  相似文献   

19.
Factors influencing the rate of reverse intersystem crossing (krISC) in thermally activated delayed fluorescence (TADF) emitters are critical for improving the efficiency and performance of third‐generation heavy‐metal‐free organic light‐emitting diodes (OLEDs). However, present understanding of the TADF mechanism does not extend far beyond a thermal equilibrium between the lowest singlet and triplet states and consequently research has focused almost exclusively on the energy gap between these two states. Herein, we use a model spin‐vibronic Hamiltonian to reveal the crucial role of non‐Born‐Oppenheimer effects in determining krISC. We demonstrate that vibronic (nonadiabatic) coupling between the lowest local excitation triplet (3LE) and lowest charge transfer triplet (3CT) opens the possibility for significant second‐order coupling effects and increases krISC by about four orders of magnitude. Crucially, these simulations reveal the dynamical mechanism for highly efficient TADF and opens design routes that go beyond the Born‐Oppenheimer approximation for the future development of high‐performing systems.  相似文献   

20.
The electrochemistry and electrogenerated chemiluminescence (ECL) of four kinds of electron donor–acceptor molecules exhibiting thermally activated delayed fluorescence (TADF) is presented. TADF molecules can harvest light energy from the lowest triplet state by spin up‐conversion to the lowest singlet state because of small energy gap between these states. Intense green to red ECL is emitted from the TADF molecules by applying a square‐wave voltage. Remarkably, it is shown that the efficiency of ECL from one of the TADF molecule could reach about 50 %, which is comparable to its photoluminescence quantum yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号