首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   2篇
物理学   10篇
  2012年   5篇
  2011年   4篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
排序方式: 共有12条查询结果,搜索用时 147 毫秒
1.
Wind turbine blade failure is the most prominent and common type of damage occurring in operating wind turbine systems. Conventional nondestructive testing systems are not available for in situ wind turbine blades. We propose a portable long distance ultrasonic propagation imaging (LUPI) system that uses a laser beam targeting and scanning system to excite, from a long distance, acoustic emission sensors installed in the blade. An examination of the beam collimation effect using geometric parameters of a commercial 2 MW wind turbine provided Lamb wave amplitude increases of 41.5 and 23.1 dB at a distance of 40 m for symmetrical and asymmetrical modes, respectively, in a 2 mm-thick stainless steel plate. With this improvement in signal-to-noise ratio, a feasibility study of damage detection was conducted with a 5 mm-thick composite leading edge specimen. To develop a reliable damage evaluation system, the excitation/sensing technology and the associated damage visualization algorithm are equally important. Hence, our results provide a new platform based on anomalous wave propagation imaging (AWPI) methods with adjacent wave subtraction, reference wave subtraction, reference image subtraction, and the variable time window amplitude mapping method. The advantages and disadvantages of AWPI algorithms are reported in terms of reference data requirements, signal-to-noise ratios, and damage evaluation accuracy. The compactness and portability of the proposed UPI system are also important for in-field applications at wind farms.  相似文献   
2.
It is demonstrated that two grating interferometers with high spatial resolutions can successfully be applied for the mechanical characterisation of the advanced fabric composite materials. Based on these two techniques, the mechanical properties of two kinds of fabric laminates are obtained without assumption of uniform strain fields to be used in the characterisation approaches using the local strain sensors. The degree of the yarn crimp effects of the two laminates is compared in terms of the out-of-plane displacement derivatives. Especially, it is shown that the grating shearing interferometer is appropriate for the crimped fabric structure requiring a three-dimensional analysis. The modification from moiré interferometer to grating shearing interferometer is performed by introducing a Michelson interferometer modified for image shearing.  相似文献   
3.
To prevent possible threats to public safety and economic loss from chemical leakage accidents, novel chemical sensing techniques for regular monitoring and leakage detection have been developed for various fields. We propose a fiber optic liquid chemical sensor (FOCS) system using specialty optical fibers and an optical time domain reflectometer (OTDR), and is based on the leaky wave mode sensing principle. OTDR enables simple multiplexing where individual sensor nodes along the fiber length could be interrogated by a common OTDR. The sensor node in the optical fiber is prepared by removing the desired length of a protective layer using mechanical stripping and chemical etching techniques. A novel laser stripping technique with superior capability to fabricate quasi-distributed dense sensor nodes is devised as well. The FOCS system is further analyzed to characterize the sensor response behavior in relation to the sensor node length and possible environmental and chemical temperature effect. Under the condition satisfying the leaky wave mode principle and within the minimum acceptable refractive index (RI) range by the system, this FOCS system could monitor numerous liquid chemicals with variable refractive indices and has been tested with positive results. In addition, the system shows the possibility for multi-point detection and is further expanded into a hybrid technique capable of estimating the refractive index range of the detected chemical.  相似文献   
4.
Birefringence effects in the two typical installation techniques of fibre Bragg grating(FBG) sensor are investigated: surface-mounting and embedding configurations. When the FBG is bonded on a host material, the sensitivity loss in ultrasonic measurement caused by glue-induced low-birefringence is first reported. Next, the transverse stress-induced high birefringence when the FBG is embedded into a fabric composite laminate is measured as 3.6×10−4. Such induced-birefringence effects are experimentally analysed in mechanical applications. Simple and effective solutions with respect to the respective installation configurations for removing the birefringence effect are proposed and the obtained zero-birefringence cases are compared with the birefringent cases.  相似文献   
5.
Lee JR  Tsuda H 《Optics letters》2005,30(24):3293-3295
We present a technique for liquid leak detection in which ultrasonic and optical waves are introduced into a fiber simultaneously. The system is based on an ultrasonic technique using an ultrasonic actuator and a fiber Bragg grating receiver. A fiber-guided ultrasonic wave is utilized to stress the fiber Bragg grating, which is remote from the ultrasonic transmitter. When the traveling ultrasonic wave encounters a liquid, part of the wave will leak out from the fiber, which results in an ultrasonic strain decrease in the fiber Bragg grating. The ultrasonic wave and its attenuation are detected by the light variation of a narrowband laser source reflected and transmitted from the fiber Bragg grating, and the amplitude variation of the ultrasound can eventually be correlated with the fiber area coupled with the liquid.  相似文献   
6.
A fiber Bragg grating (FBG) sensor head, using a pressure coupling mechanism, was designed for broadband frequency response and structural strain-free characteristic. The pressure-coupled sensor heads were connected to a simultaneous multipoint acoustic sensing system based on a tunable laser. An intelligent lasing wavelength stabilization algorithm capable of identifying the direction of spectrum movement, the wavelength shifting speed, and a fiber bending event was developed so that the simultaneous multipoint acoustic sensing system could be used in environments with rapid temperature variations. The lasing wavelength feedback control algorithm updated the lasing wavelength into the steep slope of the FBG spectrum even under conditions of rapid temperature change. The averaging lasing wavelength updating time was only 21 s because the system can decide a minimal size in scan window by finding the FBG spectrum shifting speed and direction in real time. The system was able to update the lasing wavelength which missed the steep slope of the FBG spectrum under maximum temperature variation rates 0.3014 and −0.3246 °C/s. The proposed system detected simultaneous impact waves at multiple points under conditions of rapid temperature change and change in dynamic strain.  相似文献   
7.
The anomalous wave propagation imaging (AWPI) method is proposed for the laser ultrasonic propagation imaging system using a Q-switched laser and a laser mirror scanner to highlight the anomalies in complex structures. The AWPI algorithm was developed based on the observation that the waves from two adjacent scanning points are very similar, and that the propagation direction of the incident wave is different from that of the anomalous wave caused by structural anomalies including damage. The structural anomaly is highlighted by suppressing the incident waves and exaggerating the anomalous wave through adjacent waves subtraction after arrival time and amplitude matching. The variable time window amplitude mapping (VTWAM) method was also developed, based on the difference in arrival time between the residual incident wave and anomalous waves. The VTWAM method enhances anomaly visualization and sizing, notably for composite damages, by mapping the amplitudes of the confining wave within the damage. Our results showed that the AWPI increased the signal-to-noise ratio of a back-surface hole damage in a steel plate by 13.76 dB, while in another inspection of a composite wing with two impact damages, the AWPI results enhanced by the VTWAM compared favorably with the results of the immersion ultrasonic C-scan. The AWPI and VTWAM adopt implicit spatial referencing wherein all necessary data can be obtained through a single-time scan, therefore circumvent the disadvantages of conventional temporal baseline referencing.  相似文献   
8.
Laser ultrasonic wave propagation imaging methods have great potential for integrated structural health management and non-destructive evaluation. However, application of these techniques to complex structures in the field is difficult because they give rise to complicated wave propagation patterns. We developed an anomalous wave propagation imaging method with adjacent wave subtraction using laser ultrasonic scanning to solve this problem. The proposed method is suitable for non-destructive evaluation of complex structures because it highlights the propagation of anomalous waves related to structural discontinuities, and suppresses complex incident waves without the need of pre-stored reference data. In this study, the method was applied to a real composite wing subjected to bending and impact tests. The method enhanced the visibility of the anomalous waves related to damages such as stringer tip debonding, skin-spar debonding, and invisible impact damage. Based on these anomalous waves, variable time window amplitude mapping was performed to show the damage location, size, and shape resemble to the actual damage. Comparisons showed that the methods performed better than the ultrasonic A-scan in terms of damage detection and sizing accuracy. The presence of structural elements such as spars, stringers, ribs, and surface-mounted PZT elements did not adversely affect the inspection. The proposed wing test setup with a built-in ultrasonic propagation imaging system for automatic NDE could be easily expanded throughout a hanger for maintenance inspection.  相似文献   
9.
A simple, rapid and sensitive LC–MS/MS method in positive ion mode was developed and validated to determine CKD-501, lobeglitazone, in human plasma and urine using glipizide as an internal standard (IS). Lobeglitazone is a novel thiazolidinedione (TZDs)-based peroxisome proliferator-activated receptor (PPAR) agonist, used for the management of type-2 diabetes. After mixing the IS, dissolved in acetonitrile, with a plasma or urine sample containing lobeglitazone, 10?μL of supernatant was injected into the LC–MS/MS system. Quantification was performed in the multiple reaction monitoring (MRM) mode using transition of 481.5?→?152.2 (m/z) for lobeglitazone and 446.1?→?321.2 (m/z) for the IS. The method showed good linearity over concentration ranges of 0.5–1,000?ng?mL?1 for plasma and 0.2–250?ng?mL?1 for urine (r 2?≥?0.9996). The mean percent extraction recovery of lobeglitazone was 90.8?% for plasma and 87.3?% for urine, while the recoveries of the IS were greater than 86.4?% for both. The intra-day and inter-day precision of plasma ranged from 1.1 to 3.7 and 2.5 to 3.3?% (RSD), respectively, and the intra- and inter-day precision of urine ranged from 1.5 to 2.7 and 3.2 to 3.5?%, respectively. This method is simple, sensitive, and applicable for the pharmacokinetic study of lobeglitazone in human plasma. Most of the urine concentrations of lobeglitazone were below the LLOQ because the lobeglitazone is extensively metabolized.  相似文献   
10.
Fiber optic sensing technology is used extensively in several engineering fields, including smart structures, health and usage monitoring, non-destructive testing, minimum invasive sensing, safety monitoring, and other advanced measurement fields. A general optical fiber consists of a core, cladding, and coating layers. Many sensing principles require that the cladding or coating layer should be removed or modified. In addition, since different sensing systems are needed for different types of optical fibers, it is very important to find and sort out the suitable cladding or coating removal method for a particular fiber. This study focuses on finding the cladding and coating stripping methods for four recent specialty optical fibers, namely: hard polymer-clad fiber, graded-index plastic optical fiber, copper/carbon-coated optical fiber, and aluminum-coated optical fiber. Several methods, including novel laser stripping and conventional chemical and mechanical stripping, were tried to determine the most suitable and efficient technique. Microscopic investigation of the fiber surfaces was used to visually evaluate the mechanical reliability. Optical time domain reflectometric signals of the successful removal cases were investigated to further examine the optical reliability. Based on our results, we describe and summarize the successful and unsuccessful methods.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号