首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
In this work, two all-fiber interferometric configurations based on suspended core fibers (SCF) are investigated. A Fabry–Pérot cavity (FPC) made of SCF spliced in-between segments of single-mode and hollow-core fiber is proposed. The interferometric signals are generated by the refractive-index mismatches between the two fibers in the splice region and at the end of the suspended-core fiber. An alternative sensing head configuration formed by the insertion of a length of SCF as a birefringence element in a Sagnac loop interferometer is also demonstrated. In this structure, the interferometric signals are generated by interfering two counter propagating beams with different polarization states which propagate through a length of SCF as a birefringence element. The sensitivity to pressure and temperature was determined for both configurations. The results show that the pressure sensitivities are ? 4.68 × 10? 5 nm/psi and 0.032 nm/psi for FPC and Sagnac loop interferometers, respectively. The temperature sensitivity of both structures has been obtained and the results have been discussed.  相似文献   

2.
Yiping Wang  Xiaoqin Huang 《Optik》2011,122(21):1914-1917
Different from the basic sensing theory of the fiber Bragg grating (FBG) sensors based on direct spectral analysis, a new method exploiting the polarization properties of FBG for temperature-insensitive transverse load sensing is proposed. In this paper, the birefringence effects on FBG under transverse load are analyzed. The evolution of the polarization dependent loss (PDL) of FBG with wavelength for the transmitted signals with respect to the transverse load is also studied theoretically and experimentally. We proposed utilizing the PDL evolution of FBG to precisely recover the wavelength spacing between the two peaks of x-mode and y-mode for accurate transverse load measurement. Good agreements between experimental results and numerical simulations had been obtained.  相似文献   

3.
光纤光栅双折射效应的实验研究   总被引:4,自引:3,他引:1  
张霞  黄永清  任晓敏 《光子学报》2005,34(2):241-243
本文对均匀光纤光栅和线性啁啾光纤光栅的双折射效应分别进行了实验研究. 利用压电陶瓷的压电效应实施对均匀光纤光栅和线性啁啾光纤光栅的侧向挤压, 使之产生双折射, 通过改变施加在压电陶瓷上的电压值, 可以实现对光纤光栅双折射大小的控制. 侧向挤压线性啁啾光纤光栅可以补偿光纤通信系统中的偏振模色散.  相似文献   

4.
A novel multi-wavelength erbium-doped fiber laser operating in C-band is proposed and successfully demonstrated. The wavelength interval between the wavelengths is about 0.22 nm. The 3 dB bandwidth of the laser is about 0.012 nm, and the output power reaches 4.8 mW. By using a high birefringence fiber ring mirror (HiBi-FLM) and a tunable FBG, the laser realizes switchable and tunable characteristic. The mode hopping can be effectively prevented. Moreover, this laser can improve wavelength stability significantly by taking advantage of an un-pumped Er3+-doped fiber at the standing-wave section. The laser can operate in stable narrow-line-width with single-, dual-wavelength, and unstable triple-wavelength output at room temperature.  相似文献   

5.
A modified hexagonal index guiding photonic crystal fiber made of pure silica with high birefringence and a low effective modal area is proposed, and properties, including birefringence and effective modal area, are numerically analyzed using the multipole method. Numerical results show that high birefringence of 1.362 × 10−2 and a low effective modal area of 3.435 μm2 are achieved at 1.55 μm, simultaneously. Moreover, impacts of hole spacing and hole size on birefringence and effective modal area are also investigated in detail.  相似文献   

6.
We propose two kinds of dual-core high birefringence and high coupling degree photonic crystal fibers (DHBHCD-PCFs) in this paper. The characteristics of birefringence and coupling are studied by multipole method. Numerical results show that the birefringence and the coupling length reach an order of 10− 2 and 10− 5 m at 1.55 μm, respectively. It is found that the birefringence and the coupling intensity increase with the increase of air-filling fraction, which is different from other dual-core fibers. The DHBHCD-PCFs with high degree of polarization-maintaining and high coupling degree are helpful for manufacturing minitype photonic apparatus.  相似文献   

7.
In this paper, we propose a novel photonic crystal fibre (PCF) with high phase birefringence and very low group birefringence. It is composed of a solid silica core and a cladding with helix-pattern air holes. Using a full-vector finite-element method, we study the phase and group modal birefringence of such PCF at various air-hole sizes, pitches and wavelengths. Owing to this innovative structure of air holes, a high phase to group modal birefringence rate is obtained. Its phase modal birefringence is as large as 10−4 magnitude; however, the group modal birefringence of this PCF is at 10−7-10−6. The phase birefringence is 2 orders of magnitude larger than group birefringence over a broad wavelength span, which means that the light with different polarization and effective index has almost a same group velocity. As a result, the group modal birefringence that closely relates to the polarization modal dispersion is negligible.  相似文献   

8.
Polarized white light interferometry is used to characterize the wavelength dependence of the birefringence, group birefringence and retardance of a gypsum crystal. Two different calculation schemes are used to extract values of the birefringence across the whole visible spectrum. In the spectral range 435 nm–642 nm, the variation of the gypsum birefringence is fitted to the two terms Cauchy formula and to a fourth order dispersion function. The gypsum birefringence is found to be inversely proportional with wavelength. The experimental method used gives a relative error in finding the gypsum birefringence of an order of 6×10?4. The wavelength dependence of gypsum group birefringence is also calculated with a relative error of order 5×10?4. In the same spectral range, the retardance changes by 28π and the gypsum plate introduced halfwave retardance 15 times.  相似文献   

9.
In this paper, a highly birefringent index-guiding photonic crystal fiber with low confinement loss is proposed by enlarging the central row of air holes in the structure. By employing the multipole method, properties of this structure, including the effective index, birefringence and confinement loss, are investigated. Simulation results indicate that high birefringence of 1.65 × 10−3 can be reached at the wavelength of 1.55 μm, and a low confinement loss on the order of 10−6 dB/km can be achieved at the same wavelength. Moreover, the impacts of air hole sizes on birefringence and confinement loss are also analyzed in detail.  相似文献   

10.
In this work the thermo-optic coefficients of hydrocarbon samples have been determined using etched fiber Bragg grating (FBG), where the effective refractive index (RI) of the fundamental mode becomes dependent on the surrounding refractive index. The technique is based on the cross-sensitivity that the device presents to temperature and refractive index. The thermal response of FBG is characterized for samples with different refractive indices. The inherent temperature effects are distinguished from the RI, due to induced effects changes in the refractive index caused by the thermo-optic effect. For comparison purposes, literature data has been used to work with such parameters for water. The parameter obtained for ethanol (−3.99 ± 0.20) × 10−4 °C−1 at 1550 nm is in close proximity with the literature data, −4 × 10−4 °C−1, in the visible range.  相似文献   

11.
A new high birefringence photonic crystal fiber is proposed within the terahertz frequency region. It has two types of claddings, the inner is composed of six ellipse air holes arranged in a honeycomb array and the outer surrounded by circle holes. By using the full vector finite element method with anisotropic perfectly matched layers absorption boundary condition, the birefringence, chromatic dispersion and confinement loss of the fundamental mode are evaluated. The results show that the birefringence can achieve 10−3 when the wavelength increases from 600 μm to 900 μm. This structure will provide some reference value for the designing of high birefringence terahertz photonic crystal fiber.  相似文献   

12.
Many theoretical and experimental studies have been developed to characterize the spectral response of an optical fiber Bragg grating (FBG) in axial strain fields in recent years. However, comparatively few works were devoted to the evolution of the spectrum when a FBG is subjected to non-uniform transverse load. In this paper, the effects of distributed birefringence on FBG under non-uniform transverse load are analyzed and a numerical simulation based on the piecewise-uniform approach is also discussed to simulate the responses of FBG under some typical non-uniform transverse strain fields. Experiment was carried out using different loads applied at different locations of the FBG. Good agreements between experimental results and numerical simulations have been obtained.  相似文献   

13.
赵红  陈檬  李港 《中国物理 B》2012,21(6):68404-068404
In this paper,the temperature dependence of birefringence in polarization maintaining photonic crystal fibres(PMPCFs) is investigated theoretically and experimentally.Utilizing the structural parameters of the PM-PCF samples in the experiment,two effects leading to the birefringence variation under different temperatures are analysed,which are the thermal expansion of silica material and the refractive index variation due to the temperature variation.The actual birefringence variation of the PM-PCF is the combination of the two effects,which is in the order of 10-9 K-1 for both fibre samples.Calculation results also show that the influence of refractive index variation is the dominant contribution,which determines the tendency of the fibre birefringence variation with varying temperature.Then,the birefringence beat lengths of the two fibre samples are measured under the temperature,which varies from -40℃ to 80℃.A traditional PANDA-type polarization maintaining fibre(PMF) is also measured in the same way for comparison.The experimental results indicate that the birefringence variation of the PM-PCF due to temperature variation is far smaller than that of the traditional PMF,which agrees with the theoretical analysis.The ultra-low temperature dependence of the birefringence in the PM-PCF has great potential applications in temperature-insensitive fibre interferometers,fibre sensors,and fibre gyroscopes.  相似文献   

14.
In this paper, we present and explore a new hybrid cladding design for improved birefringence and highly nonlinear photonic crystal fibers (PCFs) in a broad range of wavelength bands. The birefringence of the fundamental mode in such a PCF is numerically analyzed using the finite element method (FEM). It is demonstrated that it is possible to design a simple highly nonlinear hybrid PCF (HyPCF) with a nonlinear coefficient of the about 46 W−1 km−1 at a 1.55 μm wavelength. According to simulation, the highest modal birefringence and lowest confinement loss of our proposed structure at the excitation wavelength of λ = 1.55 μm can be achieved at a magnitude of 1.77 × 10−2 and of the order less than 102 dB/km with only five rings of air-holes in the fiber cladding.  相似文献   

15.
In order to simply design a highly birefringent photonic crystal fiber (HB-PCF), we numerically simulated the correlation between the birefringence and the structural parameter of photonic crystal fiber with square-lattice or triangle-lattice air-holes by using multipole method. It is shown that the phase birefringence B(λ) and the group birefringence G(λ) can be modulated by the structure parameter of normalized wavelength λ/Λ and the relative air-hole size d/Λ. Numerical results show very high phase and group birefringence of the order of 10−2. The group birefringence becomes negative in the region where phase birefringence increases with an increase in normalized wavelength that does not appear in traditional highly birefringent fibers.  相似文献   

16.
We have conducted a systematic study on the effects of post rubbing annealing on the relaxation of rubbing-induced birefringence of polystyrene. It is found that annealing at T0 only affects the relaxation up to T0 + TLag, where TLag is proportional to the logarithm of the annealing time tA. A theoretical model based on the distribution of relaxation times due to the individual birefringence elements is proposed. To remove its contribution to the net birefringence each element must overcome an energy barrier E = (317 + 1.17ξ)×103 J/mol, and therefore must have a characteristic relaxation time τ which depends on temperature T and a barrier height which ranges from 340.4 kJ/mol to 445.7 kJ/mol. The relaxation of birefringence is expressed by the equation NB(T, t) = N(ξ)e-t/τ(T,ξ)dξ, in which both the relaxation time τ(T,ξ) and the distribution function N(ξ) can be extracted from experimental data. The predictions of the model agree well with all the experimental results presented in this work. The differences and similarities of the relaxation of birefringence with respect to the physical aging of quenched PS are discussed. In particular, similarities in terms of the general temperature lag phenomena are noted.  相似文献   

17.
We have theoretically investigated the birefringence and loss properties of the selectively liquid-filled photonic crystal fibers with the liquid asymmetrically infiltrated into one-line air holes along x-axis. A high birefringence value B = 1.74 × 10−3 can be achieved at λ = 1.55 μm. By varying the index of the infiltrating liquid, the birefringence values are shown to be well tuned. In addition, the confinement losses can be efficiently reduced by diminishing the number of liquid holes, which is quite useful for optical devices.  相似文献   

18.
We demonstrate a new method to measure weak birefringence of dielectric mirrors with excellent spatial resolution and sensitivity (<10-7 radians). We exploit a well-known optical feedback scheme for line-width narrowing and frequency locking of a diode laser to a high-finesse cavity. Feedback comes from the intracavity field which builds up at resonance, selected by its change in polarization with respect to the incident field. This change, due to the residual birefringence of the cavity mirror coatings, was already exploited for birefringence measurements using an active laser-locking scheme. Here we measure the optical feedback rate as a function of rotation angle of one of the cavity mirrors (around the cavity axis). A stable feedback signal is obtained since the laser, as soon as it locks to a cavity resonance, effectively behaves as a monochromatic source. By fitting the data with a theoretical expression, we determine quantitatively the local birefringence vectors of both mirrors, which are around 10-6 radians. Our scheme is simple, works with cavities of very high finesse (F∼105), and is promising for measuring birefringence in gases induced by external fields. Received: 18 July 2001 / Final version: 14 March 2002 / Published online: 8 May 2002  相似文献   

19.
We report on a method to compensate the photoelastic birefringence of a polymer. In this method, a rod-like molecule that has a polarizability anisotropy was chosen and doped in a polymer. We demonstrated this method by compensating the negative photoelastic birefringence of poly(methylmethacrylate) at a wavelength of 633 nm. Homogeneous doping with 2.2 wt. % of trans-stilbene almost eliminated the photoelastic birefringence of the polymer. The photoelastic coefficient of the synthesized zero-photoelastic birefringence polymer was 0.057×10-12 Pa-1. We found that the photoelastic birefringence of poly(methylmethacrylate) was compensated by the motion of trans-stilbene in the polymer by the analysis of the infrared absorption spectrum. PACS 42.70.-a; 42.70.Jk; 78.30.Jw  相似文献   

20.
A simple actively mode-locked fiber ring laser is proposed and successfully demonstrated to generate dual-wavelength picosecond pulses with close wavelength spacing using one Bragg grating in standard single-mode fiber. The proposed laser can be made to operate in stable dual-wavelength at room temperature, due to the birefringence characteristic of the FBG induced by transverse strain. Transverse strain loading on the FBG allows the wavelength spacing to be controlled. Generation of stable dual-wavelength pulses with a pulsewidth of 212–234 ps and a tunable wavelength separation from 0.2 to 0.44 nm at a pulse rate of 1.05 GHz was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号