首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   0篇
化学   22篇
物理学   4篇
  2012年   1篇
  2009年   2篇
  2008年   1篇
  2006年   3篇
  2005年   2篇
  2004年   7篇
  2003年   3篇
  2001年   1篇
  1999年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1970年   1篇
排序方式: 共有26条查询结果,搜索用时 125 毫秒
1.
The contributions of solute-solute dispersion interactions to binding thermodynamics have generally been thought to be small, due to the surmised equality between solute-solvent dispersion interactions prior to the interaction versus solute-solute dispersion interactions following the interaction. The thermodynamics of binding of primary alcohols to the major urinary protein (MUP-I) indicate that this general assumption is not justified. The enthalpy of binding becomes more favorable with increasing chain length, whereas the entropy of binding becomes less favorable, both parameters showing a linear dependence. Despite the hydrophobicity of the interacting species, these data show that binding is not dominated by the classical hydrophobic effect, but can be attributed to favorable ligand-protein dispersion interactions.  相似文献   
2.
In the present study we examine the thermodynamics of binding of two related pyrazine-derived ligands to the major urinary protein, MUP-I, using a combination of isothermal titration calorimetry (ITC), X-ray crystallography, and NMR backbone (15)N and methyl side-chain (2)H relaxation measurements. Global thermodynamics data derived from ITC indicate that binding is driven by favorable enthalpic contributions, rather than the classical entropy-driven hydrophobic effect. Unfavorable entropic contributions from the protein backbone and side-chain residues in the vicinity of the binding pocket are partially offset by favorable entropic contributions at adjacent positions, suggesting a "conformational relay" mechanism whereby increased rigidity of residues on ligand binding are accompanied by increased conformational freedom of side chains in adjacent positions. The principal driving force governing ligand affinity and specificity can be attributed to solvent-driven enthalpic effects from desolvation of the protein binding pocket.  相似文献   
3.
4.
5.
6.
13C relaxation studies on side-chain methyl groups in proteins typically involve measurements on (13)CHD(2) isotopomers, where the (13)C relaxation mechanism is particularly straightforward in the presence of a single proton. While such isotopomers can be obtained in proteins overexpressed in bacteria by use of (13)C enriched and fractionally deuterated media, invariably all possible (2)H isotopomers are obtained. This results in a loss of both resolution and sensitivity, which becomes particularly severe for larger proteins. We describe an approach that overcomes this problem by chemical synthesis of amino acids containing a pure (13)CHD(2) isotopomer. We illustrate the benefits of this approach in (13)C side-chain relaxation measurements on the mouse major urinary protein selectively enriched with [gamma(1),gamma(2)-(13)C(2),alpha,beta,gamma(1),gamma(1),gamma(2),gamma(2)-(2)H(6)] valine. Relaxation measurements in the absence and presence of pyrazine-derived ligands suggest that valine side-chain dynamics do not contribute significantly to binding entropy.  相似文献   
7.
We report here solution NMR relaxation measurements that show millisecond time-scale intersubunit dynamics in the homopentameric B subunit (VTB) of the toxin derived from Escherichia coli O157. These data are consistent with interconversion between an axially symmetric form and a low-abundance ( approximately 10%, 45 degrees C) higher energy form. The higher energy state is depopulated on binding of a novel bivalent analogue (P(k) dimer) of the natural carbohydrate acceptor globotriaosylceramide. The isothermal titration calorimetry isotherm for the binding of P(k) dimer to VTB is consistent with a five-site sequential binding model which assumes that cooperative effects arise through communication only between neighboring binding sites. The resulting thermodynamic parameters (K(a1) = 114 +/- 2.2 M(-1), K(a2) = 283 +/- 4.5 M(-1), DeltaH(1) degrees = -116.3 +/- 0.55 kJ/mol, and DeltaH(2) degrees = -50.3 +/- 0.11 kJ/mol) indicate favorable entropic cooperativity that has not previously been observed in multivalent systems.  相似文献   
8.
9.
We report the thermodynamics of binding of d-galactose and deoxy derivatives thereof to the arabinose binding protein (ABP). The "intrinsic" (solute-solute) free energy of binding DeltaG degrees (int) at 308 K for the 1-, 2-, 3-, and 6-hydroxyl groups of galactose is remarkably constant (approximately -30 kJ/mol), despite the fact that each hydroxyl group subtends different numbers of hydrogen bonds in the complex. The substantially unfavorable enthalpy of binding (approximately 30 kJ/mol) of 1-deoxygalactose, 2-deoxygalactose, and 3-deoxygalactose in comparison with galactose, cannot be readily accounted for by differences in solvation, suggesting that solute-solute hydrogen bonds are enthalpically significantly more favorable than solute-solvent hydrogen bonds. In contrast, the substantially higher affinity for 2-deoxygalactose in comparison with either 1-deoxygalactose or 3-deoxygalactose derives from differences in the solvation free energies of the free ligands.  相似文献   
10.
A series of bivalent ligands for a Shiga-like toxin have been synthesized, their experimentally determined inhibitory activities were compared with a simplified thermodynamic model, and computer simulations were used to predict the optimal tether length in bivalent ligands. The design of the inhibitors exploits the proximity of the C-2' hydroxyl groups of two P(k)-trisaccharides when bound to two different, neighboring carbohydrate recognizing binding sites located on the surface of Shiga-like toxin. NMR studies of the complex between the toxin and bivalent ligands show that site 2 and site 1 of a single B subunit are simultaneously occupied by a tethered P(k)-trisaccharide dimer. A simplified thermodynamic treatment provides the intrinsic affinities and binding energies for the intermolecular and intramolecular association events and permits the deconvolution of the contributions to the relative binding energies for the set of bivalent ligands. Conformational analysis based on MD simulations for bivalent galabioside dimers containing different tethers demonstrated that the calculated local concentrations of the pendant ligand at the second binding site correlate with the experimentally determined relative affinity values of the respective bivalent ligands, thereby providing a predictive method to optimize tether length.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号