首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
化学   10篇
力学   1篇
  2012年   4篇
  2005年   1篇
  2003年   1篇
  2001年   2篇
  1999年   1篇
  1998年   2篇
排序方式: 共有11条查询结果,搜索用时 31 毫秒
1.
Cephalosporin C production process withCephalosporium acremonium ATCC 48272 in synthetic medium was investigated and the experimental results allowed the development of a mathematical model describing the process behavior. The model was able to explain fairly well the diauxic phenomenon, higher growth rate during the glucose-consumption phase, and the production occurring only in the sucrose-consumption phase. Moreover, the process was simulated utilizing the neural-networks technique. Two feed-forward neural-networks with one hidden layer were employed. Both models, phenomenological and neural-networks based, satisfactorily describe the bioprocess. The difficulties in determining kinetic parameters are avoided when neural networks are utilized.  相似文献   
2.
The production of antimicrobial metabolites by Paenibacillus polymyxa RNC-D was assessed. Two process variables, glucose and inoculum concentrations, were evaluated at different levels (5?C40 g L?1, and at ?? r = 2.5?C5.0 %, respectively), and their effects on biomass formation, minimal inhibitory concentration (MIC) against Escherichia coli, and surface tension reduction (STR) were studied. When the fermentation process was carried out under non-optimised conditions, the biomass, MIC, and STR achieved the following values: 0.6 g L?1, 1 g L?1, and 18.4 mN m?1, respectively. The optimum glucose (16 g L?1) and inoculum volume ratio (?? r = 5.0 %) were defined in order to maximise the biomass formation, with a low value of MIC and high STR of extract. The experiments carried out under optimal conditions showed the following values for the dependent variables: biomass concentration 2.05 g L?1, MIC 31.2 ??g mL?1, and STR 10.7 mN m?1, which represented improvement of 241.7 %, 96.9 %, and 41.9 % for the responses of biomass, MIC, and STR, respectively. This is the first recorded study on the optimisation of culture conditions for the production of antimicrobial metabolites of P. polymyxa RNC-D, and constitutes an important step in the development of strategies to modulate the production of antimicrobial molecules by this microorganism at elevated levels.  相似文献   
3.
The effects of the addition of lysozyme and forced aeration on the rheological properties and production of hyaluronic acid by Streptococcus zooepidemicus were investigated. Lysozyme was added to the culture broth in two pulses during the exponential and stationary phases of a fermentation carried out in a rotary shaker (150 rpm), using 200 mL Erlenmeyer flasks. The effect of aeration was evaluated by feeding air into a 2.5 L fermentor at a 2 vvm rate. The effects were analyzed in terms of concentration, viscosity, viscoelasticity, and molecular weight of the hyaluronic acid produced.  相似文献   
4.
Cells ofCephalosporium acretnonium ATCC 48272 immobilized in calcium alginate beads were utilized for cephalosporin C production and the results were compared with those obtained with free cells. The experiments were performed with synthetic medium containing glucose and sucrose as carbon and energy sources. Experimental effectiveness factor values were obtained at various cell and dissolved-oxygen concentrations, considering Monod kinetics for the respiration rate, and were compared with the values calculated with zero-order kinetics in spherical bioparticle. The results showed that the assumption of oxygen limitation by diffusion in the bioparticle was correct, and that cephalosporin C production with immobilized cells is perfectly viable, although a slightly lower rate than that obtained in the free cell process was observed.  相似文献   
5.
Adsorption kinetics and equilibrium data of clavulanic acid, a β-lactam antibiotic, on ion-exchange resin Amberlite IRA 400 were utilized to carry out the modeling and simulation of a continuous adsorption process. These simulations allowed the estimation of yield, concentration, and purification factors of the process utilizing the product final concentration. Experimental runs of this process were carried out using the conditions pointed out by simulation studies. Comparison of the experimental results and those calculated by the proposed model showed that the model could describe very well the main features of the continuous process.  相似文献   
6.
Mechanical properties of most metallic materials can be improved by reducing their grain size. One of the methods used to reduce the grain size even to the nanometer level is the severe plastic deformation processing. Equal Channel Angular Pressing (ECAP) is one of the most promising severe plastic deformation processes for the nanocrystallization of ductile metals. Nanocrystalline and ultrafine grained metals usually have significantly higher strength properties but lower tensile ductility compared to the coarse grained metals. In this work, the torsion properties of ECAP processed ultrafine grained pure 1070 aluminum were studied in a wide range of strain rates using both servohydraulic materials testing machines and Hopkinson Split Bar techniques. The material exhibits extremely high ductility in torsion and the specimens did not fail even after 300% of strain. Pronounced yield point behavior was observed at strain rates 500 s−1 and higher, whereas at lower strain rates the yielding was continuous. The material showed slight strain softening at the strain rate of 10−4 s−1, almost ideally plastic behavior at strain rates between 10−3 s−1 and 500 s−1, and slight but increasing strain hardening at strain rates higher than that. The tests were monitored using digital cameras, and the strain distributions on the surface of the specimens were calculated using digital image correlation. The strain in the specimen localized very rapidly after yielding at all strain rates, and the localization lead to the development of a shear band. At high strain rates the shear band developed faster than at low strain rates.  相似文献   
7.
A study was made for purification of cephamycin C from fermentation of Streptomyces clavuligerus. Initially, the culture broth was clarified by microfiltration and ultrafiltration, after which the resulting permeates were subjected to nonspecific adsorption and ion-exchange chromatography on resin columns. The antibiotic activity was measured by the biological method at each stage by assaying its activity against the Escherichia coli ESS, super sensitive to β-lactam antibiotic. The purification processes were assessed in relation to the variables affecting each step. The purification efficiency by nonspecific adsorption was monitored by UV spectrophotometry, while the ion-exchange adsorption fractions were assessed by NMR spectroscopy. Some of the fractions obtained during purification were also analyzed by mass spectrometry (LC/MS and LC/MS/MS) to identify the cephamycin C molecule. These preliminary results proved the process feasibility.  相似文献   
8.
Tests were performed in a continuous stirred tank reactor (CSTR), with and without cell recycling, to produce ethanol. The reactor without cell recycling produced the kinetic model of ethanol production, whereas the reactor with cell recycling allowed for a study of process stability. The Levenspiel kinetic model was adopted; however, in the case of fermentation with cell recycling, the coefficient of cell death was added. It was observed that cellular viability varied greatly throughout the fermenting process and that microaeration is of fundamental importance in maintaining the stability of the process.  相似文献   
9.
10.

Immobilized cell utilization in tower-type bioreactor is one of the main alternatives being studied to improve the industrial bioprocess. Other alternatives for the production of β-lactam antibiotics, such as a cephalosporin C fed-batch process in an aerated stirred-tank bioreactor with free cells of Cephalosporium acremonium, or a tower-type bioreactor with immobilized cells of this fungus, have proven to be more efficient than the batch process. In the fed-batch process, it is possible to minimize the catabolite repression exerted by the rapidly utilization of carbon sources (such as glucose) in the synthesis of antibiotics by utilizing a suitable flow rate of supplementary medium. In this study, several runs for cephalosporin C production, each lasting 200 h, were conducted in a fed-batch tower-type bioreactor using different hydrolyzed sucrose concentrations. For this study's model, modifications were introduced to take intoaccount the influence of supplementary medium flow rate. The balance equations considered the effect of oxygen limitation inside the bioparticles. In the Monod-type rate equations, cell concentrations, substrate concentrations, and dissolved oxygen were included as reactants affecting the bioreaction rate. The set of differential equations was solved by the numerical method, and the values of the parameters were estimated by the classic nonlinear regression method following Marquardt's procedure with a 95% confidence interval. The simulation results showed that the proposed model fit well with the experimental data, and based on the experimental data and the mathematical model, an optimal mass flow rate to maximize the bioprocess productivity could be proposed.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号