首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic equations relating to the hydroxymethylation stage in base-catalyzed phenol-formaldehyde condensation have been developed as functions of the free phenol concentration. The same kinetic model was applied to the calculation of a continuous process carried out in a cascade of stirred tank reactors. The results obtained in batch and continuous experiments at 70, 80 and 90° were compared with the corresponding calculated values.  相似文献   

2.
In this study, we investigated the dynamics of a computer simulation of a continuous alcoholic fermentation process combined with a flash column under vacuum. The alcohol was partially extracted in order to maintain its concentration at about 40 kg/m3 in the fermentor. The mathematical model of the fermentation was developed for industrial conditions and considers the effect of the temperature on the kinetic parameters. The performance of the dynamic matrix control algorithm, single input single output and multiple input multiple output, for the control of the extractive process was studied. The concepts of factorial design were used in a simulation study to determine the best control structures for the process.  相似文献   

3.
联用反应动力学、电荷衡算和物料衡算建立阴极冷却固定床草酸电合成乙醛酸反应器模型方程.针对反应器连续化操作过程,用正交配置法数值求解该模型方程.结果表明,在连续化操作的反应初期,反应液中的乙醛酸能够较快地达到预定浓度,但继续增加反应器的长度,反应的效果不明显.该模型还模拟了分段温控和部分回流对反应的影响.结果表明,分段温控和部分回流均可较好地提高乙醛酸在阴极液中的浓度.计算结果与试验操作基本相符.该结果对阴极冷却固定床草酸电合成乙醛酸的连续化操作工艺和反应器的优化具有重要的参考意义.  相似文献   

4.
The main purpose of the paper is to apply the large eddy simulations (LES) technique and to verify its use as a predicting tool for turbulent liquid-liquid flow in an SMX static mixer. LES modeling was carried out using the Smagorinsky-Lilly model of the turbulent subgrid viscosity for the Reynolds number of 5000 and 10000. The continuous phase was water and the dispersed phase was silicon oil. The investigation covers the effects of the density ratio between the phases. Three different cases of liquid densities were considered. The dispersed phase concentration distribution in the mixer cross-sections was compared with the corresponding time averaged results obtained formerly for the same configuration in a steady-state simulation using the standard RANS approach with the k-ɛ model. The dependency of the standard deviation of the dispersed phase concentration on the distance from the mixer inlet and the impact of the centrifugal force on the phase concentration distribution were investigated. The presented results for the SMX static mixer confirm conclusions of previous studies by Jaworski et al. (2006) obtained for a Kenics static mixer and show less a pronounced influence of the centrifugal force on the phase concentration distribution of the LES results in comparison to the RANS case.  相似文献   

5.
A thermodynamic model has been proposed for the simulation of monomer partitioning behavior in the dispersion polymerization of styrene in ethanol. The monomer concentration in the polymer particles is very low (20 vol% at 5% conversion) and decreases further as the polymerization proceeds. It is independent of stabilizer concentration but is strongly dependent on initial monomer concentration. The partitio n coefficient ([Mp]/[Mc]) of styrene increases from 0.8 to 1.1 with incresing conversion. There are two polymerization loci in dispersion polymerization, namely the continuous and polymer phases. Competition between solution and heterogeneous polymerization has been observed in this system. The rate of dispersion polymerization is dependent on initial monomer concentration but is independent of initiator concentration at higher conversions. The molecular weight of the polymers produced by this process increases with increasing conversion and decreases with increasing initiator concentration.  相似文献   

6.
A simulation model has been developed to predict the partitioning behavior of styrene in dispersion polymerization in ethanol–water mixtures. The composition of both the continuous phase and the dispersed phase are quantitatively estimated throughout the polymerization process. The presence of water in the system causes a considerable increase of the styrene partitioning in favor of the particles. Thus, at 70°C and for an initial composition of ethanol/water/styrene = 63.3/26.9/9.8, the concentration of styrene in the particles is about 4.8 times higher than that in the serum instead of about one in pure ethanol. The higher the polymerization temperature, the lower the styrene concentration in the particles; the higher the initial styrene concentration, the higher the styrene concentration in the particles, whereas the partition coefficient is not largely effected. In contrast, neither the interfacial tension nor the final particle size do significantly alter the simulation results. The predicted data from this model have been successfully applied to clarify the mechanisms involved in dispersion polymerization, in terms of stabilization and of kinetic events. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 325–335, 1998  相似文献   

7.
A new way to determine the critical micelle concentration (CMC) based on the mobilities of system peaks is presented. A general approach for the CMC determination is based on the change of the slope or on finding the inflection point in the plot of a physical property of solution as a function of surfactant concentration. The determination of CMC by system peaks in CE utilizes a "jump" instead of a continuous change in the measured quantity. This phenomenon was predicted by the program PeakMaster, which was modified for simulation of micellar systems. The simulation of the steep change in mobilities of the anionic system peaks showing the CMC value was verified experimentally in a set of measurements, where the concentration of the surfactant was varied while the ionic strength was kept constant. The experimental work fully proved our model. A comparative electric current measurement was carried out. The proposed method seems to offer easier CMC determination as compared to the standard methods.  相似文献   

8.
Aeration of municipal landfills contributes to the acceleration of organic matter degradation and to the decrease of pollutant emission into air, water, and soil. Biodegradation of organic matter present in municipal waste, deposited in a landfill, by microorganisms under anaerobic conditions is a slow process. The aim of the study was to carry out simulations of an aerobic landfill in lysimeters, to determine the influence of aeration rate on the degradation of organic matter present in landfills, and to formulate a mathematical model defining the changes of carbon content in leachate and in gas produced. In this work, simulation of aerobic landfill leachate degradation was carried out in laboratory scale lysimeters with the working volume of 15 L. The changes of BOD5, COD, and ammonium nitrogen concentration during aeration were similar for all aeration rates. During aeration, the BOD5 index decreased by 99.9 %, COD decreased by 95.1 %, and ammonium nitrogen concentration by 93 %. The proposed kinetic model defines the processes of organic carbon content changes in simulated leachate and the quantity of carbon dioxide for aerobic landfill simulation quite well.  相似文献   

9.
10.
This paper introduces a mathematic mode of moving chelation boundary (MCB) for computer simulation of a continuous EDTA-based sample sweeping in capillary electrophoresis (CE). Besides the equations of MCB used herein, the mode also includes electro-neutrality equation, constant current density, jump boundary condition of MCB, Kohlrausch’ regulating function expressed in MCB formulation, product of water, ionic apparent mobility, ionic strength and conductivity of electrolyte as well as simple equilibrium reaction, etc. The simulation software is developed based on the mode. With the software the relevant simulation is carried out, and the corresponding experiments on a MCB are performed. The results on the simulation and experiments demonstrate that (1) the software can simulate a dynamic process, characteristic peak shape and relevant electrophoregram of a MCB; (2) the simulator can quantitatively compute velocities of MCB and complex boundary (CB), all of ionic concentrations (especially the concentration of complex) and sweeping efficiency; (3) these simulation results mentioned above are generally in accordance with the experiments. The simulation software holds evident significances for the study on a MCB and conditional optimization in such an EDTA-based sample sweeping of metal ion in CE.  相似文献   

11.
张明浩  周春山  粟云霞 《分析化学》1999,27(9):1103-1108
提出多级是公认的与众多据此以多级分散取样方法民工业过程分析中浓稠料液连续取样测定的难题。既保证浓稠料液在连而稳定地取样,并使是组分浓度稀释等检测器低浓度的线性响应范围,又避免发生难以随的料液损失和试剂大量消耗及环境污染,方法用于浓循序见进充人满意。  相似文献   

12.
Continuous counter-current chromatographic separation has been carried out in a simulated moving bed system (SMB). We have worked with a SMB pilot plant (8 columns, 4.4 litres of resin each) which allows the continuous withdrawal of two different fractions. A mixture of glucose-fructose has been separated. To calculate the concentration profile within the separator an axial dispersed plug flow model and an equilibrium stage model have been employed; software has been created to simulate the behaviour of the separator. The necessary parameters of the mode: the adsorption equilibrium constant, the height equivalent to a theoretical plate and the bed voidage, have been acquired experimentally from elution chromatography measurements. The results calculated by simulation give a good representation of the experimental concentration profiles; other separations like xylitol-arabitol have been simulated. The influence of some factors like desorbent flow-rate, feed flow-rate and the bed voidage have been studied using the software. Once the system has worked in a two withdrawal way, an extension of the pilot plant has been constructed so as to obtain a third one. The necessary parameters of the three withdrawal model will be studied.  相似文献   

13.
The process of sodium ethylenediaminetetraacetate (EDTA) mineralization by cerium(IV) in nitric acid medium was studied in batch and continuous feeding modes. In the batch mode EDTA solution was fed into the reactor in one stroke and in the continuous mode it was fed with a constant flow rate during a definite time interval. Cerium(IV) concentration was kept at high and constant level by selecting correct relation between cerium(IV) production in the electrochemical cell and the EDTA added. During the organic mineralization process cerium(IV) is reduced to cerium(III). The process was carried out at different temperatures, concentrations of nitric acid and cerium(IV). To obtain the limiting factors in the batch mode reaction, the dependence of CO2 evolution with time and carrier gas blowing rate was studied. Application of the model previously developed by us to the continuous process gave us the possibility to calculate pseudo first order kinetic constant on the basis of CO2 evolution data of both EDTA destruction regimes during feeding mode and after stopping organic addition. The efficiency of organic destruction estimated on the basis of CO2 evolved was in the range 75–95% and on the basis of liquid phase residual organic carbon analysis 95–99%.  相似文献   

14.
Summary: This work deals with the development of a process for the radical copolymerization of acrylonitrile and styrene in a dispersed medium. This process was carried out in a continuous stirred tank reactor, in the presence of a stabilizing agent produced in situ during the polymerization. The continuous phase is a polyol. Besides all elementary chemical mechanisms related to the copolymerization and to the synthesis and grafting of the stabilizing agent, this process involves several complex physical phenomena. A tendency model of the whole process was developed, using the corresponding mass balances and thermodynamics. Its unknown parameters were identified by use of an evolutionary algorithm and experimental data resulting from an adapted experimental strategy. This model was then validated and allowed to predict monomers and transfer agent conversions, amounts of solids and average molar masses, versus the operating conditions.  相似文献   

15.
The algorithm by Northrup, Allison, and McCammon [J. Chem. Phys. 80, 1517 (1984)] has been used for two decades for calculating the diffusion-influenced rate-constants of enzymatic reactions. Although many interesting results have been obtained, the algorithm is based on the assumption that substrate-substrate interactions can be neglected. This approximation may not be valid when the concentration of the ligand is high. In this work, we constructed a simulation model that can take substrate-substrate interactions into account. We first validated the model by carrying out simulations in ways that could be compared to analytical theories. We then carried out simulations to examine the possible effects of substrate-substrate interactions on diffusion-controlled reaction rates. For a substrate concentration of 0.1 mM, we found that the diffusion-controlled reaction rates were not sensitive to whether substrate-substrate interactions were included. On the other hand, we observed significant influence of substrate-substrate interactions on calculated reaction rates at a substrate concentration of 0.1M. Therefore, a simulation model that takes substrate-substrate interactions into account is essential for reliably predicting diffusion-controlled reaction rates at high substrate concentrations, and one such simulation model is presented here.  相似文献   

16.
Continuous ethanol extraction by pervaporation from a membrane bioreactor   总被引:7,自引:0,他引:7  
In order to obtain a high productivity of ethanol, a membrane bioreactor consisting of a fermentor and a pervaporation system was applied to the continuous alcoholic fermentation process. A microporous hydrophobic polytetrafluoroethylene membrane was used for pervaporation. Glucose medium and baker's yeast were used for the fermentation. Three types of continuous fermentation experiment were carried out: conventional free-cell fermentation as the standard process; a fermentation in which product ethanol was extracted continuously by pervaporation from the membrane bioreactor; and a fermentation in which ethanol was extracted by pervaporation and part of the culture broth was simultaneously removed from the fermentation system.

The fermented ethanol was continuously extracted, and simultaneously concentrated by pervaporation, from the membrane bioreactor, and the extracted ethanol concentration was 6 to 8 times higher than in the broth. A high concentration of microorganisms was realized by immobilizing cells in the membrane bioreactor. When the ethanol concentration in the broth was kept low by pervaporation, the specific rate of ethanol production increased. However, the fraction of viable cells decreased because of the accumulation of inorganic salts fed as a nutrient, of nonvolatile by-products and of aged cells, which were not extracted by pervaporation from the fermentation solution. In order to achieve a high ethanol productivity, part of the fermentation broth must be removed from the membrane bioreactor.  相似文献   


17.
This work focuses on the kinetics of ethanol production by Scheffersomyces stipitis on xylose with the development of a mathematical model considering the effect of substrate and product concentrations on growth rate. Experiments were carried out in batch and continuous modes, with substrate concentration varying from 7.2 to 145 g L?1. Inhibitory effects on cell growth, substrate uptake, and ethanol production rates were found to be considerable. Kinetic parameters were obtained through linear and non-linear regression methods. Experiments in continuous mode were performed at different dilution rates to evaluate the inhibitory effect of ethanol. A mixed mathematical model which combined Andrews and Levenspiel's models, combining substrate and product inhibition, was used. A quasi-Newton routine was applied to obtain a more accurate fitting of kinetic parameters. The parameters such as cell to product factor (Y P/X) and limiting cell yield (Y X) were shown to be dependent on substrate concentration. The kinetic model fitted satisfactorily the experimental data.  相似文献   

18.
Summary: Unsaturated polyester is traditionally produced in a batch wise operating reaction vessel connected to a distillation unit. An attractive alternative for the synthesis of unsaturated polyester is a reactive distillation. To value such alternative synthesis route reliable process models need to be developed. In this paper, the strategy is described for the development of the reactive distillation model. Essential parts of the reactive distillation model are kinetic and thermodynamic which are subsequently validated with the experimental data of the traditional batch process such as acid value of the polyester, weight of the distillate and glycol concentration in the distillate. We find that the models predict these important variables reliably. Unsaturated polyester production time is around 12 hours in the traditional batch process. However, the simulation study of the reactive distillation process shows that the total production time of unsaturated polyester in a continuous reactive distillation system is between 1.5 hours to 2 hours for the same product quality as during batch production. The equilibrium conversion is raised by 7% compared to the traditional batch process. The model demonstrated that reactive distillation has the potential to intensify the process by factor of 6 to 8 in comparison to the batch reactor.  相似文献   

19.
The mathematical optimization of a continuous alcoholic fermentation process combined with a flash column under vacuum was studied. The objective was to maximize % yield and productivity in the fermentor. The results using surface response analysis combined with modeling and simulation were compared withy those obtained when the problem was written as a nonlinear programming problem and was solved with a successive quadratic programming (SQP) technique. Two process models were evaluated when the process was optimized using the SQP technique. The first one is a deterministic model, whose kinetic parameters were experimentally determined as functions of the temperature, and the second is a statistical model obtained using the factorial design technique combined with simulation. Although the best result was the one obtained using the rigorous model, the values for productivity and % yield obtained using the simplified model are acceptable, and these models can be used when the development of a rigorous model is excessively difficult, slow, or expensive.  相似文献   

20.
A mechanical separation process in a de-oiling hydrocyclone is described in which disperse oil droplets are separated from a continuous water phase. This separation process is influenced by droplet breakage and coalescence. Based on experimental data and simulation results in a stirred tank, a modified breakage model, which can be applied to droplet breakage in the de-oiling hydrocyclone, is developed. Then, a simulation model is developed coupling the numerical solution of the flow field in the hydrocyclone based on computational fluid dynamics (CFD) with population balances. The homogenous discrete method and the inhomogeneous discrete method are applied for solving the population balance model (PBM). The investigations show that the numerical results obtained by the simulation model coupled with the modified PBM using the inhomogeneous discrete method are in good accordance with experimental data under a high flow rate. According to this simulation model, the effect of three different inlet designs on the separation efficiency of the de-oiling hydrocyclone has been discussed. The results indicate that the separation efficiency of the de-oiling hydrocyclone can be improved with an appropriate inlet design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号