首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
化学   4篇
数学   1篇
物理学   2篇
  2019年   1篇
  2018年   3篇
  2013年   1篇
  2011年   1篇
  2010年   1篇
排序方式: 共有7条查询结果,搜索用时 220 毫秒
1
1.
The graphene nanosheets/manganese oxide nanoparticles modified glassy carbon electrode (GC/GNSs/MnOx) was simply prepared by casting a thin film of GNSs on the GC electrode surface, followed by performing electrodeposition of MnOx at applied constant potential. The GC/GNSs/MnOx modified electrode shows high catalytic activity toward oxidation of L ‐cysteine. Hydrodynamic amperometry determination of L ‐cysteine gave linear responses over a concentration range up to 120 µM with a detection limit of 75 nM and sensitivity of 27 nA µM?1. The GC/GNSs/MnOx electrode appears to be a highly efficient platform for the development of sensitive, stable and reproducible L ‐cysteine electrochemical sensors.  相似文献   
2.
We present results from the direct search for dark matter with the XENON100 detector, installed underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENON100 is a two-phase time-projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in three dimensions with millimeter precision allows the selection of only the innermost 48 kg as the ultralow background fiducial target. In 100.9 live days of data, acquired between January and June 2010, no evidence for dark matter is found. Three candidate events were observed in the signal region with an expected background of (1.8 ± 0.6) events. This leads to the most stringent limit on dark matter interactions today, excluding spin-independent elastic weakly interacting massive particle (WIMP) nucleon scattering cross sections above 7.0 × 10(-45) cm(2) for a WIMP mass of 50 GeV/c(2) at 90% confidence level.  相似文献   
3.
Motivated by the notion of availability, the exact distribution of the sum of beta random variables is derived under the impact of the environment. A suitable approximation is presented when the exact distribution cannot be identified. Also presented are some characterizations for the gamma distribution.  相似文献   
4.
Performing bioassay formats based on enzyme and antibody recognition reactions with a single detection chip remains an unmet challenge owing to the different requirements of such bioassays. Herein, we describe a dual‐marker biosensor chip, integrating enzyme and antibody‐based assays for simultaneous electrochemical measurements of insulin (I) and glucose (G). Simultaneous G/I sensing has been realized by addressing key fabrication and operational challenges associated with the different assay requirements and surface chemistry. The I immunosensor relies on a peroxidase‐labeled sandwich immunoassay, while G is monitored through reaction with glucose oxidase. The dual diabetes biomarker chip offers selective and reproducible detection of picomolar I and millimolar G concentrations in a single microliter sample droplet within less than 30 min, including direct measurements in whole blood and saliva samples. The resulting integrated enzymatic‐immunoassay biosensor chip opens a new realm in point‐of‐care multiplexed biomarker detection.  相似文献   
5.
The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso in Italy, is designed to search for dark matter weakly interacting massive particles (WIMPs) scattering off 62 kg of liquid xenon in an ultralow background dual-phase time projection chamber. In this Letter, we present first dark matter results from the analysis of 11.17 live days of nonblind data, acquired in October and November 2009. In the selected fiducial target of 40 kg, and within the predefined signal region, we observe no events and hence exclude spin-independent WIMP-nucleon elastic scattering cross sections above 3.4 × 10??? cm2 for 55 GeV/c2 WIMPs at 90% confidence level. Below 20 GeV/c2, this result constrains the interpretation of the CoGeNT and DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.  相似文献   
6.
While chemical communication plays a key role in diverse natural processes, the intelligent chemical communication between synthetic nanomotors remains unexplored. The design and operation of bioinspired synthetic nanomotors is presented. Chemical communication between nanomotors is possible and has an influence on propulsion behavior. A chemical “message” is sent from a moving activator motor to a nearby activated (receiver) motor by release of Ag+ ions from a Janus polystyrene/Ni/Au/Ag activator motor to the activated Janus SiO2/Pt nanomotor. The transmitted silver signal is translated rapidly into a dramatic speed change associated with the enhanced catalytic activity of activated motors. Selective and successive activation of multiple nanomotors is achieved by sequential localized chemical communications. The concept of establishing chemical communication between different synthetic nanomotors paves the way to intelligent nanoscale robotic systems that are capable of cooperating with each other.  相似文献   
7.
Hybrid micromotors capable of both chemically powered propulsion and fuel‐free light‐driven actuation and offering built‐in optical brakes for chemical propulsion are described. The new hybrid micromotors are designed by combining photocatalytic TiO2 and catalytic Pt surfaces into a Janus microparticle. The chemical reactions on the different surfaces of the Janus particle hybrid micromotor can be tailored by using chemical or light stimuli that generate counteracting propulsion forces on the catalytic Pt and photocatalytic TiO2 sides. Such modulation of the surface chemistry on a single micromotor leads to switchable propulsion modes and reversal of the direction of motion that reflect the tuning of the local ion concentration and hence the dominant propulsion force. An intermediate Au layer (under the Pt surface) plays an important role in determining the propulsion mechanism and operation of the hybrid motor. The built‐in optical braking system allows “on‐the‐fly” control of the chemical propulsion through a photocatalytic reaction on the TiO2 side to counterbalance the chemical propulsion force generated on the Pt side. The adaptive dual operation of these chemical/light hybrid micromotors, associated with such control of the surface chemistry, holds considerable promise for designing smart nanomachines that autonomously reconfigure their propulsion mode for various on‐demand operations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号