首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   182篇
  免费   6篇
化学   176篇
晶体学   3篇
力学   2篇
数学   2篇
物理学   5篇
  2023年   1篇
  2020年   3篇
  2019年   1篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   6篇
  2013年   5篇
  2012年   9篇
  2011年   11篇
  2010年   9篇
  2009年   5篇
  2008年   9篇
  2007年   11篇
  2006年   16篇
  2005年   16篇
  2004年   13篇
  2003年   12篇
  2002年   12篇
  2001年   15篇
  2000年   14篇
  1999年   8篇
  1998年   5篇
  1997年   1篇
排序方式: 共有188条查询结果,搜索用时 15 毫秒
1.
The Pd(OAc)(2)/pyridine catalyst system is one of the most convenient and versatile catalyst systems for selective aerobic oxidation of organic substrates. This report describes the catalytic mechanism of Pd(OAc)(2)/pyridine-mediated oxidation of benzyl alcohol, which has been studied by gas-uptake kinetic methods and (1)H NMR spectroscopy. The data reveal that turnover-limiting substrate oxidation by palladium(II) proceeds by a four-step pathway involving (1) formation of an adduct between the alcohol substrate and the square-planar palladium(II) complex, (2) proton-coupled ligand substitution to generate a palladium-alkoxide species, (3) reversible dissociation of pyridine from palladium(II) to create a three-coordinate intermediate, and (4) irreversible beta-hydride elimination to produce benzaldehyde. The catalyst resting state, characterized by (1)H NMR spectroscopy, consists of an equilibrium mixture of (py)(2)Pd(OAc)(2), 1, and the alcohol adduct of this complex, 1xRCH(2)OH. These in situ spectroscopic data provide direct support for the mechanism proposed from kinetic studies. The catalyst displays higher turnover frequency at lower catalyst loading, as revealed by a nonlinear dependence of the rate on [catalyst]. This phenomenon arises from a competition between forward and reverse reaction steps that exhibit unimolecular and bimolecular dependences on [catalyst]. Finally, overoxidation of benzyl alcohol to benzoic acid, even at low levels, contributes to catalyst deactivation by formation of a less active palladium benzoate complex.  相似文献   
2.
The reaction of spirobisilafluorene (1) with lithium in dimethoxyethane produces lithium 1-methyl-spirobisilafluorenide (2), a stable pentacoordinate silicon compound with five carbon ligands, and lithium 2-methoxyethoxide, which was identified by trapping with Ph3SiCl to give Ph3Si-OCH2CH2OCH3 (4). The X-ray crystal structure of 2 shows that the geometry at silicon is an idealized trigonal bipyramid, slightly distorted toward a square pyramid. Methanolysis of 2 cleaves a Si-aryl bond producing a methyl biphenylsilafluorene, 3. Crystal structures are reported for 3 and 4.  相似文献   
3.
The reaction of 1,4-dilithiotetraphenylbutadiene (2) with 1,1′-dichloro-2,3,4,5-tetraphenyl-1-silole (3) leads to 2,3,4,5-tetraphenyl-1-(1,2,3-triphenylnaphthalen-4-yl)-1H-silole (5) instead of the expected octaphenyl-1,1′-spirobisilole (1). The reaction of 2 with SiC14 in dioxane produced 1 in low yield, confirming results reported earlier.  相似文献   
4.
The aquachromyl ion, Cr(IV)aqO2+, reacts with the hydrides L(H2O)RhH2+ (L = L1 = [14]aneN4 and L2 = meso-Me6-[14]aneN4) in aqueous solutions in the presence of molecular oxygen to yield Cr(aq)3+ and the superoxo complexes L(H2O)RhOO2+. At 25 degrees C, the rate constants are approximately 10(4) M(-1) s(-1) (L = L1) and 1.12 x 10(3) M(-1) s(-1) (L = L2). Both reactions exhibit a moderate deuterium isotope effect, kRhH/kRhD = approximately 3 (L1) and 3.3 (L2), but no solvent isotope effect, kH2O/kD2O = 1. The proposed mechanism involves hydrogen atom abstraction followed by the capture of LRh(H2O)2+ with molecular oxygen. There is no evidence for the formation of L(H2O)Rh2+ in the reaction between L(H2O)RhH2+ and (salen)CrVO+. The proposed hydride transfer is supported by the magnitude of the rate constants (L = L1, k = 8,800 M(-1) s(-1); (NH3)4, 2,500; L2, 1,000) and isotope effects (L = L1, kie = 5.4; L2, 6.2). The superoxo complex [L1(CH3CN)RhOO](CF3SO3)2.H2O crystallizes with discrete anions, cations, and solvate water molecules in the lattice. All moieties are linked by a network of hydrogen bonds of nine different types. The complex crystallized in the triclinic space group P1 with a = 9.4257(5) A, b = 13.4119(7) A, c = 13.6140(7) A, alpha = 72.842(1)degrees, beta = 82.082(1) degrees, gamma = 75.414(1) degrees, V = 1587.69(14) A3, and Z = 2.  相似文献   
5.
Five distinct strong hydrogen‐bonding interactions of four kinds (N—H...Cl, N—H...O, O—H...N, and O—H...Cl) connect molecules of the title compound, C9H18N3+·Cl·H2O, in the crystal structure into corrugated sheets stacked along the a axis. The intermolecular interactions are efficiently described in terms of the first‐ through fifth‐level graph sets. A two‐dimensional constructor graph helps visualize the supramolecular assembly.  相似文献   
6.
7.
A number of disilanes have been synthesized from a stable silylene, 1 (N,N'-di-tert-butyl-1,3-diaza-2-silacyclopent-4-en-2-ylidene), and a variety of halocarbons. It is proposed that disilane formation is a result of an initial halophilic interaction between the silylene and halocarbon. Formation of disilanes from 1 and CCl4, 2a, CHCl3, 2b, CH2Cl2, 2c, benzyl chloride, 2d, and bromobenzene, 5, are described here. An X-ray crystal structure of 2b was determined.  相似文献   
8.
[formula: see text] Inspired by folded, nonpseudorotaxane complexes of bis(m-phenylene)-32-crown-10 systems, we synthesized a new bicyclic crown ether containing two 1,3,5-phenylene units linked by three tetra(ethyleneoxy) units. The new cryptand forms a "pseudorotaxane-like" inclusion complex with N,N'-dimethyl-4,4'-bipyridinium bis(hexafluorophosphate) with association constant Ka = 6.1 x 10(4) M-1, 100-fold greater than that of an analogous simple crown ether.  相似文献   
9.
[formula: see text] The complexation between N,N'-dibenzyl(m-xylylene)diammonium bis(hexafluorophosphate) (2) and bis(m-phenylene)-32-crown-10 (5) was shown to occur in solution by nuclear magnetic resonance with 1:1 stoichiometry and a Ka value of 189 +/- 19 M-1. A crystal structure of 2:5 revealed a unique 1:1 "exo" or "cradled barbell" complex, instead of the expected pseudorotaxane. This unexpected result illustrates that caution be used in interpreting the results from these types of complexes in the solution and "gas" phases on the basis of crystal structures.  相似文献   
10.
The reaction of 1,3,5-cis-triazidocyclohexane with the electron-rich tris(dialkylamino)phosphines P(NMe(2))(3) (1) and N(CH(2)CH(2)NMe)(3)P (2b) in acetonitrile for 3 h furnished the corresponding tris-phosphazides 1,3,5-cis-(R(3)PN(3))(3)C(6)H(9), 3a (R(3)P = 1) and 3b (R(3)P = 2b), in 90% and 92% yields, respectively. The same reaction with the relatively electron-poor tris(dialkylamino)phosphine MeC(CH(2)NMe)(3)P (4) for 2 days gave the tris-iminophosphorane, 1,3,5-cis-(R(3)PN)(3)C(6)H(9), 5a (R(3)P = 4), in 60% yield. Compound 3b is a thermally stable solid that did not lose dinitrogen when refluxed in toluene for 24 h or when heated as a neat sample at 100 degrees C /0.5 Torr for 10 h. By contrast, tris-phosphazide 3a decomposed to the tris-iminophosphorane 1,3,5-cis-(R(3)PN)(3)C(6)H(9), 5b (R(3)P = 1), in 3 h in quantitative yield upon heating to 100 degrees C in toluene. Factors influencing the formation of the phosphazides or the iminophosphoranes in these reactions are discussed. The reaction of 3b with 4 equiv of benzoic acid gave [N(CH(2)CH(2)NMe)(3)P=NH(2)]PhCO(2) ([6bH]PhCO(2)) in quantitative yield along with benzene (56% yield) and dinitrogen. The same reaction with 3a gave [(Me(2)N)(3)P=NH(2)]PhCO(2) ([7aH]PhCO(2)) (quantitative yield), benzene (15% yield), and dinitrogen(.) Treatment of [6bH]PhCO(2) with KO(t)Bu afforded N(CH(2)CH(2)NMe)(3)P=NH (6b) in 40% overall yield. Compound 6b upon treatment with PhCH(2)CH(2)Br produced [6bH]Br in 90% yield along with styrene. The new compounds were characterized by analytical and spectroscopic methods, and selected compounds (3b, 5a, and [6bH]Br) were structured by X-ray crystallography. A special feature of 3b is its capability to function as a starting material for 6b, which was not accessible by other synthetic routes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号