首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   14篇
  2019年   2篇
  2011年   2篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
N-(Pyren-1-ylmethyl)-(3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol was synthesised from (3R,4R)-4-(hydroxymethyl)pyrrolidin-3-ol and (3R,4S)-4-[(1S)-1,2-dihydroxyethyl] pyrrolidin-3-ol using alkylation with 1-(chloromethyl)pyrene or reductive amination with pyrene-1-carbaldehyde and NaCNBH3. The incorporation of N-(pyren-1-ylmethyl)azasugar moiety into oligodeoxynucleotides (ODN) as a bulge to form an intercalating nucleic acid (INA) induced a slight destabilization of INA-DNA duplex, whereas the INA-RNA duplex was strongly destabilized and 9 degrees C difference per modification in thermal stability between INA-DNA over INA-RNA duplexes was observed. The stabilization of a DNA three way junction (TWJ) was improved when the intercalator moiety was inserted into the junction region as a bulge.  相似文献   
2.
A synthetic methodology for the synthesis of various β-pyrrolic-functionalised porphyrins and their covalent attachment to 2'-deoxyuridine and DNA is described. Palladium(0)-catalysed Sonogashira and copper(I)-catalysed Huisgen 1,3-dipolar cycloaddition reactions were used to insert porphyrins into the structure of 2'-deoxyuridine and DNA. Insertion of a porphyrin into the middle of single-stranded CT oligonucleotides possessing a 5'-terminal run of four cytosines was shown to trigger the formation of pH- and temperature-dependent i-motif structures. Porphyrin insertion also led to the aggregation of single-stranded purine-pyrimidine sequences, which could be dissociated by heating at 90 °C for 5 min. Parallel triplexes and anti-parallel duplexes were formed in the presence of the appropriate complementary strand(s). Depending on the modification, porphyrins were placed in the major and minor grooves of duplexes and were used as bulged intercalating insertions in duplexes and triplexes. In general, the thermal stabilisation of parallel triplexes possessing porphyrin-modified triplex-forming oligonucleotide (TFO) strands was observed, whereas anti-parallel duplexes were destabilised. These results are compared and discussed on the basis of the results of molecular modelling calculations.  相似文献   
3.
The synthesis and insertions of (S)-1-O-(pyren-1-ylmethyl)glycerol into intercalating nucleic acids is described. Insertions of this S-isomer as a bulge lead to reduced binding affinity towards complementary ssDNA compared to intercalating nucleic acids possessing (R)-1-O-(pyren-1-ylmethyl)glycerol in the same positions. Insertions of both (R) or (S) 1-O-(pyren-1-ylmethyl)glycerols as bulges into two complementary strands decreased the stability of the complex compared to dsDNA possessing the pyrene pseudo-nucleotide in one of the strands.  相似文献   
4.
Bulge insertions of (R)-1-O-[4-(1-pyrenylethynyl)phenylmethyl]glycerol (5) into the middle of homopyrimidine oligodeoxynucleotides (twisted intercalating nucleic acids, TINA) obtained via postsynthetic Sonogashira coupling reaction led to extraordinary high thermal stability of Hoogsteen-type triplexes and duplexes, whereas Watson-Crick-type duplexes of the same nucleotide content were destabilized. Modified oligonucleotides were synthesized using the phosphoramidite of (S)-1-(4,4'-dimethoxytriphenylmethyloxy)-3-(4-iodo-benzyloxy)-propan-2-ol followed by treatment of the oligonucleotide on a CPG-support with the Sonogashira-coupling reaction mixture containing different ethynylaryls. Bulged insertion of the pyrene derivative 5 into oligonucleotides was found to be the best among the tested modifications for binding to the Hoogsteen-type triplexes and duplexes. Thus, at pH 7.2 an oligonucleotide with cytidine content of 36% possessing two bulged insertions of 5 separated by three bases formed a stable triplex (T(m) = 43.0 degrees C), whereas the native oligonucleotide was unable to bind to the target duplex. The corresponding Watson-Crick-type duplex with the same oligonucleotide had T(m) of 38.0 degrees C at pH 7.2, while the T(m) of unmodified dsDNA was 47.0 degrees C. Experiments with mismatched oligonucleotides, luminescent properties, and potential applications of TINA technology is discussed.  相似文献   
5.
The effect of phosphate group modifications on formation and properties of G‐quadruplexes (G4s) has not been investigated in detail. Here, we evaluated the structural, thermodynamic and kinetic properties of the parallel G‐quadruplexes formed by oligodeoxynucleotides d(G4T), d(TG4T) and d(TG5T), in which all phosphates were replaced with N‐methanesulfonyl (mesyl) phosphoramidate or phosphoryl guanidine groups resulting in either negatively charged or neutral DNA sequences, respectively. We established that all modified sequences were able to form G‐quadruplexes of parallel topology; however, the presence of modifications led to a decrease in thermal stability relative to unmodified G4s. In contrast to negatively charged G4s, assembly of neutral G4 DNA species was faster in the presence of sodium ions than potassium ions, and was independent of the salt concentration used. Formation of mixed G4s composed of both native and neutral G‐rich strands has been detected using native gel electrophoresis, size‐exclusion chromatography and ESI‐MS. In summary, our results indicate that the phosphate modifications studied are compatible with G‐quadruplex formation, which could be used for the design of biologically active compounds.  相似文献   
6.
A highly efficient method for postsynthetic modification of unprotected oligonucleotides incorporating internal insertions of (R)-1-O-(4-ethynylbenzyl)glycerol has been developed through the application of click chemistry with water-insoluble pyren-1-yl azide and water-soluble benzyl azide and acceleration by microwave irradiation. The twisted intercalating nucleic acids (TINAs) obtained in these reactions, possessing bulged insertions of (R)-3-O-{4-[1-(pyren-1-yl)-1H-1,2,3-triazol-4-yl]benzyl}glycerol (7), formed parallel triplexes with thermal stabilities of 20.0, 34.0, and 40.0 degrees C at pH 7.2 in the cases of one, two, or three insertions of 7, respectively, separated by three nucleic bases. An oligonucleotide with four insertions of 7--each between three nucleic bases in the sequence--was unable to form complexes with complementary single- or double-stranded DNAs, as a result of self-aggregation of the pyrene moieties. This assumption was supported by the formation of a very strong excimer band at 460 nm in the fluorescence spectra. Molecular modeling of the parallel triplex with bulged insertion of the monomer 7 in the triplex-forming oligonucleotide (TFO) showed that only the pyrene moiety was stacking between the bases of the dsDNA, whereas 1,2,3-triazole did not participate in the triplex stabilization. Thermal denaturation studies of the duplexes and triplexes, as well as the fluorescence properties of TINA-triazole 7, are discussed and compared with previous studies on TINA.  相似文献   
7.
Non-nucleosidic DNA monomers comprising partially protonated amines at low pH have been designed and synthesized. The modifications were incorporated into DNA oligonucleotides via standard DNA phosphoramidite synthesis. The ability of cationic modifications to stabilize palindromic DNA hairpins and parallel triplexes were evaluated using gel electrophoresis, circular dichroism and thermal denaturation measurements. The non-nucleosidic modifications were found to increase the thermal stability of palindromic hairpins at pH 8.0 as compared with a nucleosidic tetraloop (TCTC). Incorporation of modifications at the 5'-end of a triplex forming oligonucleotide resulted in a significant increase in thermal stability at low pH when the modifications were placed as the 5'-dangling end.  相似文献   
8.
9.
10.
The thermodynamic stability of a cytosine(C)-rich i-motif tract of DNA, which features pH-sensitive [C..H..C]+ moieties, has been studied as function of both pressure (0.1–200 MPa) and pH (3.7–6.2). Careful attention was paid to correcting citrate buffer pH for known variations that stem from changes in pressure. Once pH-corrected, (i) at pH >4.6 the i-motif becomes less stable as pressure is increased (KD decreases), giving a small negative volume change for dissociation (ΔD) of the i-motif – a conclusion opposite to that which would be drawn if the buffer pH was not corrected for the effects of pressure; (ii) the i-motif's melting temperature increases by more than 30 K between pH 6.5 and 4.5, the consequence of an enthalpy for dissociation (ΔDH°) of 77(3) and 90(3) kJ (mol H+)−1 at 0.1 and 200 MPa, respectively; (iii) below pH 4.6 at 0.1 MPa (pH 4.3 at 200 MPa) the melting temperature decreases as a result of double protonation of cytosine pairs, and ΔDH° and ΔDV° change signs; and (iv) the combination of ΔDH° and ΔDV° lead to the melting temperature at pH 4.3 being 3 K higher at 200 MPa than at 0.1 MPa.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号