首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   7篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2007年   3篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Dogan-Topal  B.  Ozkan  S. A.  Uslu  B. 《Chromatographia》2007,66(1):25-30

A rapid, sensitive, and specific reverse phase high performance liquid chromatography with diode array detection procedure for the simultaneous determination of abacavir, efavirenz and valganciclovir in spiked human serum is described. Separation was performed on a 5 μm Waters Spherisorb column (250 × 4.6 mm ID) with acetonitrile: methanol:KH2PO4 (at pH 5.00) (40:20:40 v/v/v) isocratic elution at a flow rate of 1.0 mL min−1. Calibration curves were constructed in the range of 50–30,000 ng mL−1 for abacavir and efavirenz, and 10–30,000 ngmL−1 for valganciclovir in serum samples. The limit of detection and limit of quantification concentrations of the HPLC method were 3.80 and 12.68 ng mL−1 for abacavir, 2.61 and 8.69 ng mL−1 for efavirenz, 1.30 and 4.32 ng mL−1 for valganciclovir. The method has been applied, without any interference from excipients or endogenous substances, for the simultaneous determination of these three compounds in human serum.

  相似文献   
2.
A voltammetric study of the oxidation of Ceftazidime (CEFT) has been carried out at the glassy carbon electrode by cyclic, differential pulse (DPV) and square wave (SWV) voltammetry. The oxidation of CEFT was irreversible and exhibited diffusion controlled process depending on pH. The oxidation mechanism was proposed and discussed. According to the linear relationship between the peak current and concentration, DPV and SWV voltammetric methods for CEFT assay in pharmaceutical dosage forms and human urine were developed. For analytical purposes, a well resolved diffusion controlled voltammetric peak was obtained in 0.1 M H2SO4 at 1.00 and 1.02 V for differential pulse and square wave voltammetric techniques, respectively. The linear response was obtained within the range of 4 × 10?6?8 × 10?5 M with a detection limit of 6 × 10?7 M for differential pulse and 4 × 10?6–2 × 10?4 M with a detection limit of 1 × 10?6 M for square wave voltammetric technique. The determination of CEFT in 0.1 M H2SO4 was possible over the 2 × 10?6–1 × 10?4 M range in urine sample for both techniques. The standard addition method was used for the recovery studies.  相似文献   
3.
A sensitive electroanalytical method for the determination of anticancer drug etoposide (ETP) using adsorptive stripping differential pulse voltammetry (AdSDPV) at a multi-walled carbon nanotube-modified glassy carbon electrode (MWCNT-modified GCE) is presented. The surface morphology of modified electrode was characterized by scanning electron microscopy. The effects of accumulation time and potential, pH, scan rate, and amount of MWCNT suspension were investigated. The calibration curve was linear in the concentration range of 2.0?×?10?8–2.0?×?10?6 M with the detection limit of 5.4?×?10?9 M. The reproducibility of the peak current was found at 1.55 % (n?=?5) RSD value in pH 6.0 Britton–Robinson buffer for the MWCNT-modified GCE. The method was then successfully utilized for the determination of ETP in pharmaceutical dosage form, and a recovery of 99.55 % was obtained. The possible oxidation mechanism of ETP was also discussed. The proposed electroanalytical method using MWCNT-modified GCE is the most sensitive method for the determination of ETP with lowest limit of detection in the previously published electrochemical methods.  相似文献   
4.
The electrochemical behavior of atorvastatin calcium at glassy carbon and boron-doped diamond electrodes has been studied using voltammetric techniques. The possible mechanism of oxidation was discussed with model compounds. The dependence of the peak current and potentials on pH, concentration, scan rate and nature of the buffer were investigated for both electrodes. The oxidation of atorvastatin was irreversible and exhibited a diffusion-controlled fashion on the diamond electrode. A linear response was obtained within the range of 9.65 x 10(-7) - 3.86 x 10(-5) M in 0.1 M H(2)SO(4) solution for both electrodes. The detection limits of a standard solution are estimated to be 2.11 x 10(-7) M with differential pulse voltammetry (DPV) and 2.05 x 10(-7)M with square wave voltammetry (SWV) for glassy carbon electrode, and 2.27 x 10(-7) M with DPV and 1.31 x 10(-7)M with SWV for diamond electrodes in 0.1 M H(2)SO(4) solution. The repeatability of the methods was found good for both electrodes. The methods were fully validated and successfully applied to the high-throughput determination of the drug in tablets, human serum and human urine with good recoveries.  相似文献   
5.
Dogan-Topal B  Ozkan SA 《Talanta》2011,83(3):780-788
The anticancer drug, leuprolide (LPR) bound to double-stranded fish sperm DNA (dsDNA) which was immobilized onto the surface of an anodically activated pencil graphite electrode (PGE), was employed for designing a sensitive biosensor. The interaction of leuprolide (LPR) with double-stranded DNA (dsDNA) immobilized onto pencil graphite electrode (PGE) have been studied by electrochemical methods. The mechanism of the interaction was investigated and confirmed by differential pulse voltammetry using two different interaction methods; at the PGE surface and in the solution phase. The decrease in the guanine oxidation peak current was used as an indicator for the interaction in acetate buffer at pH 4.80. The response was optimized with respect to accumulation time, potential, drug concentration, and reproducibility for both interaction methods. The linear response was obtained in the range of 0.20-6.00 ppm LPR concentration with a detection limit of 0.06 ppm on DNA modified PGE and between 0.20 and 1.00 ppm concentration range with detection limit of 0.04 ppm for interaction in solution phase method. LPR showed an irreversible oxidation behavior at all investigated pH values on a bare PGE. Differential pulse adsorptive stripping (AdSDPV) voltammetric method was developed for the determination of LPR. Under these conditions, the current showed a linear dependence with concentration within a range of 0.005-0.20 ppm with a detection limit of 0.0014 ppm. Each determination method was fully validated and applied for the analysis of LPR in its pharmaceutical dosage form.  相似文献   
6.
The mechanism of electrochemical oxidation of trifluoperazine has been proposed on the basis of cyclic and differential pulse voltammetry at a multiwalled carbon nanotube-modified glassy carbon electrode. The modified electrode exhibits catalytic activity, high sensitivity, and stability. The oxidation process exhibited an adsorption-controlled behavior. Also, depending on this adsorption control, a sensitive electroanalytical method for the determination of trifluoperazine has been investigated by adsorptive stripping differential pulse voltammetry. Under the optional conditions, the anodic peak current was linear to the trifluoperazine concentration over the range of 2.08 10?8?M to 1.67 10?6?M, and the limit of detection was 7.49 10?10?M. The modified electrode had good stability and repeatability, and it was successfully applied to the determination of trifluoperazine in pharmaceuticals.  相似文献   
7.
Dogan-Topal  B.  Uslu  B.  Ozkan  S. A. 《Chromatographia》2007,66(1):97-101

This paper describes the validation of an isocratic high-performance liquid chromatographic method for the assay of valganciclovir in raw materials, tablets and human serum samples. Valganciclovir and fluvastatin (internal standard) were well separated using a reversed phase column and a mobile phase consisting of a mixture of acetonitrile:methanol:KH2PO4 (0.02 M) (40:20:40; v/v/v) (at pH 5.0). The mobile phase was pumped at 1.0 mL min−1 flow rate and valganciclovir was detected by diode-array detection at 255 nm. The retention times for valganciclovir and fluvastatin were 3.41 and 5.60 min, respectively. A linear response (r > 0.999) was observed in the range of 10–30,000 ng mL−1 in mobile phase and serum. The limit of detection and limit of quantification were found as 2.95 and 9.82 ng mL−1 in mobile phase and 1.73 and 5.77 ng mL−1 in human serum samples, respectively. Validation parameters as precision, accuracy, selectivity, reproducibility and system suitability tests were also determined. The method can be used for valganciclovir assay of tablets and human serum samples as the method separates valganciclovir from tablet excipients and endogenous substances.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号