首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   8篇
  国内免费   10篇
化学   90篇
力学   4篇
数学   14篇
物理学   25篇
  2023年   4篇
  2022年   10篇
  2021年   13篇
  2020年   9篇
  2019年   11篇
  2018年   14篇
  2017年   5篇
  2016年   7篇
  2015年   8篇
  2014年   6篇
  2013年   8篇
  2012年   13篇
  2011年   9篇
  2010年   6篇
  2009年   2篇
  2008年   2篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
排序方式: 共有133条查询结果,搜索用时 31 毫秒
1.
Journal of Optimization Theory and Applications - In this paper, we investigate an inexact quasisubgradient method with extrapolation for solving a quasiconvex optimization problem with a closed,...  相似文献   
2.
Cai  Chenchen  Luo  Bin  Liu  Tao  Gao  Cong  Zhang  Wanglin  Chi  Mingchao  Meng  Xiangjiang  Nie  Shuangxi 《Cellulose (London, England)》2022,29(13):7139-7149

A variety of liquid energy exists in papermaking engineering and has not yet been developed and utilized. In addition, for the papermaking industry, the presence of slime can seriously affect the quality of the finished paper and can lead to paper breaking. The current slime control strategies cannot completely solve the problem and also have some low toxicity. In this study, a method of self-powered sterilization of cellulose fibers by using triboelectric pulsed direct current is reported. A liquid–solid triboelectric nanogenerator (L–S TENG) was used to convert the liquid energy of nanocellulose suspension into electrical energy and convert this electrical energy into pulsed direct current for self-powered sterilization of cellulose fiber. A hydrophobic coating material is used as solid triboelectric material and electrode for sterilization. Driven by L–S TENG, the electrodes exhibited an excellent sterilization rate against four microorganisms including Escherichia coli, Aspergillus niger, Candida albicans, and Klebsiella pneumoniae, which from slime in the papermaking industry. This study could provide a basic research theory for liquid energy harvesting in the papermaking industry, and also provide a new strategy for pulp sterilization.

Graphical abstract
  相似文献   
3.
Layered manganese-based oxides are promising candidates as cathode materials for sodium-ion batteries (SIBs) due to their low cost and high specific capacity. However, the Jahn–Teller distortion from high-spin Mn3+ induces detrimental lattice strain and severe structural degradation during sodiation and desodiation. Herein, lithium is introduced to partially substitute manganese ions to form distorted P′2-Na0.67Li0.05Mn0.95O2, which leads to restrained anisotropic change of Mn–O bond lengths and reinforced bond strength in the [MnO6] octahedra by mitigation of Jahn–Teller distortion and contraction of MnO2 layers. This ensures the structural stability during charge and discharge of P′2-Na0.67Li0.05Mn0.95O2 and Na+/vacancy disordering for facile Na+ diffusion in the Na layers with a low activation energy barrier of ∼0.53 eV. It exhibits a high specific capacity of 192.2 mA h g−1, good cycling stability (90.3% capacity retention after 100 cycles) and superior rate capability (118.5 mA h g−1 at 1.0 A g−1), as well as smooth charge/discharge profiles. This strategy is effective to tune the crystal structure of layered oxide cathodes for SIBs with high performance.

Li-Substitution in P′2-Na0.67MnO2 mitigates the anisotropic change of Mn–O bonds and Na/vacancy ordering, and hence significantly promotes its cycling stability and rate capability as a cathode material for sodium-ion batteries.  相似文献   
4.
A 3 kb DNA fragment from the Streptomyces globisporus 1912 landomycin E (LaE) biosynthetic gene cluster (lnd) was completely sequenced. Three open reading frames were identified, lndGT4, lndZ4, and lndZ5, whose probable translation products resemble a glycosyltransferase, a reductase, and a hydroxylase, respectively. Studies of generated mutants from disruption and complementation experiments involving the lndGT4 gene allowed us to determine that LndGT4 controls the terminal L-rhodinose sugar attachment during LaE biosynthesis and that LndZ4/LndZ5 are responsible for the unique C11-hydroxylation of the landomycins. Generation of the novel landomycins F, G, and H in the course of these studies provided evidence for the flexibility of lnd glycosyltransferases toward their acceptor substrates and a basis for initial structure-activity relationships within the landomycin family of antibiotics.  相似文献   
5.
Sunlight‐excitable orange or red persistent oxide phosphors with excellent performance are still in great need. Herein, an intense orange‐red Sr3?xBaxSiO5:Eu2+,Dy3+ persistent luminescence phosphor was successfully developed by a two‐step design strategy. The XRD patterns, photoluminescence excitation and emission spectra, and the thermoluminescence spectra were investigated in detail. By adding non‐equivalent trivalent rare earth co‐dopants to introduce foreign trapping centers, the persistent luminescence performance of Eu2+ in Sr3SiO5 was significantly modified. The yellow persistent emission intensity of Eu2+ was greatly enhanced by a factor of 4.5 in Sr3SiO5:Eu2+,Nd3+ compared with the previously reported Sr3SiO5:Eu2+, Dy3+. Furthermore, Sr ions were replaced with equivalent Ba to give Sr3?xBaxSiO5:Eu2+,Dy3+ phosphor, which shows yellow‐to‐orange‐red tunable persistent emissions from λ=570 to 591 nm as x is increased from 0 to 0.6. Additionally, the persistent emission intensity of Eu2+ is significantly improved by a factor of 2.7 in Sr3?xBaxSiO5:Eu2+,Dy3+ (x=0.2) compared with Sr3SiO5:Eu2+,Dy3+. A possible mechanism for enhanced and tunable persistent luminescence behavior of Eu2+ in Sr3?xBaxSiO5:Eu2+,RE3+ (RE=rare earth) is also proposed and discussed.  相似文献   
6.
运用密度泛函理论(DFT)对可待因及福尔可定进行几何构型优化,从而对标准品粉末的拉曼光谱的振动模式进行指认和归属,并与低浓度水平标准溶液的表面增强拉曼谱图进行比较。进一步优化了表面增强拉曼光谱检测条件,并摸索可待因及福尔可定的测定下限及定量分析的可行性。结果表明,可待因及福尔可定大部分特征峰拉曼位移的理论计算值、拉曼光谱测定值、表面增强拉曼光谱测定值是一致的,但会有一定程度的蓝移和红移;可待因、福尔可定的测定下限均为10 mg·L^(-1)。可待因在631.29 cm^(-1)和1 595.26 cm^(-1)处、福尔可定在628.58 cm^(-1)和1 251.41 cm^(-1)处的特征峰强度比值,与其对应的质量浓度(40~100 mg·L^(-1))呈线性关系。对空白基质进行加标回收试验,可待因和福尔可定的回收率分别为99.0%~105%和102%~104%,测定值的相对标准偏差(n=5)分别为5.3%,5.9%。上述方法可为这两种管制药品提供拉曼光谱检测的理论依据和快检支持。  相似文献   
7.
在功能化离子液体氯化1-羟乙基-3-甲基咪唑([HEmim]Cl)辅助下, 在室温水溶液中一步快速合成了具有多孔海绵状结构的AuPd纳米材料. 通过场发射扫描电子显微镜(FESEM)、 透射电子显微镜(TEM)、 X射线能谱(EDX)和X射线衍射分析(XRD)等对该材料进行了表征. 结果表明, AuPd纳米海绵为合金结构, 由表面粗糙的纳米颗粒聚集熔接而成. 采用不同摩尔比(3∶1, 1∶1或1∶3)的前驱物HAuCl4和Na2PdCl4均可制备出海绵状AuPd合金结构. 离子液体对AuPd纳米海绵状结构的形成起关键作用. 在对硝基苯酚还原反应中, 不同组成的AuPd纳米海绵均表现出比商用Pd/C催化剂更优异的性能. 其中, Au1Pd3纳米海绵具有最高的催化活性, 反应在98 s内即可完成, 反应速率常数为0.0143 s -1, 是商用Pd/C的2.3倍. 该方法也可用于制备其它双金属(如PdCu, PtCu等)和多金属纳米海绵.  相似文献   
8.
Solid-state Li metal batteries (SSLMBs) have attracted considerable interests due to their promising energy density as well as high safety. However, the realization of a well-matched Li metal/solid-state electrolyte (SSE) interface remains challenging. Herein, we report g-C3N4 as a new interface enabler. We discover that introducing g-C3N4 into Li metal can not only convert the Li metal/garnet-type SSE interface from point contact to intimate contact but also greatly enhance the capability to suppress the dendritic Li formation because of the greatly enhanced viscosity, decreased surface tension of molten Li, and the in situ formation of Li3N at the interface. Thus, the resulting Li-C3N4|SSE|Li-C3N4 symmetric cell gives a significantly low interfacial resistance of 11 Ω cm2 and a high critical current density (CCD) of 1500 μA cm−2. In contrast, the same symmetric cell configuration with pristine Li metal electrodes has a much larger interfacial resistance (428 Ω cm2) and a much lower CCD (50 μA cm−2).  相似文献   
9.
The synthesis and stimuli-responsiveness of a diphenyl cyclopropenone(DPCP)-centered poly(methyl acrylate)(PMA)are presented.DPCP-centered PMA could release carbon monoxide(CO)upon UV light in a switched on-and-off manner.The CO-releasing process can be reported by the variations in photoluminescence spectra.In addition,DPCP moiety covalently embedded in the crosslinked polyurethane could also release CO under UV light.Of special,DPCP-centered PMA in solution was selectively dissociated at the phenol ester bond under the ultrasound,and a force-induced hydrolyzation reaction was revealed by D20 exchanging^1 H NMR spectra.The kinetic study reveals that small quantity of water could enhance the chain scission rate.This work provides a DPCP-centered polymer for sitespecific CO-releasing and chain dissociation.  相似文献   
10.

Assembly of Sn on Cu Nanorods as anode for Li-ion microbatteries was prepared by a two-step electrodeposition design. Firstly, Cu nanorods arrays were grown on copper substrate by anodic aluminum oxide template-assisted growth method. Then, Sn was deposited onto Cu nanorods arrays by galvanostatic deposition. X-ray diffraction and scanning electron microscopy measurements reveal that Cu nanorod arrays are covered with Sn. Electrochemical performances of prepared electrodes were evaluated by charge/discharge cycle measurement. The assembly of Sn on Cu nanorods electrode exhibited highly reversible specific capacity and superior capacity retention resulting from the three-dimensionally nano-architectured design, which exhibits a large surface area, shortened Li-ion diffusion distance, Cu–Sn alloying, and can accommodate the volume expansion of Sn during cycling. Deposition time is an important parameter for fabricating the assembly of Sn on Cu nanorods electrode with suitable structure and morphology.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号