首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   13篇
  2022年   1篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2008年   2篇
  2006年   2篇
  2004年   2篇
  2001年   1篇
  1999年   1篇
排序方式: 共有13条查询结果,搜索用时 24 毫秒
1.
Enhancing the organic dye adsorption on porous xerogels   总被引:4,自引:0,他引:4  
We investigate the adsorption of four different organic dyes (i.e., methyl orange, alizarin red S, brilliant blue FCF, and phenol red) on porous xerogels. To understand the factors affecting the adsorption capacity of the xerogels, we vary the hydrophobicity and the textural properties of the xerogels as well as the solution pH. We control the hydrophobicity by mixing two different precursors (i.e., vinyltriethoxysilane (VTES) and tetraethoxysilane (TEOS)) and the textural properties by using cetyltrimethylammonium bromide (CTAB) as a templating agent. We find that the adsorption capacity is enhanced as the organic/inorganic hybrid xerogel or the templated xerogel is used instead of the purely inorganic or the untemplated xerogel. In all the cases studied, adsorption decreases as the pH is increased due to the electrostatic repulsion between the dyes and the xerogel surface. We find that both the hydrophobic surface and larger pore size/volume are required to enhance the adsorption capacity significantly.  相似文献   
2.
Journal of Radioanalytical and Nuclear Chemistry - Applicability of uranium peroxide ((UO2)(O2)·4H2O; UO4) precipitation to remove uranium from secondary wastewaters, generated as part of a...  相似文献   
3.
The isomerization reaction of 5-vinyl-2-norbornene (VNB) to 5-ethylidene-2-norbornene (ENB) has been performed using a catalytic system consisting of an alkali metal hydride and an amine. Among various amines tested, only aliphatic 1,2-diamines exhibited the activity for the isomerization. The isomerization was also affected by the alkali metal hydride employed. The activity of the alkali metal hydride increased with the increasing size of alkali metal: KH > NaH > LiH. A series of electron paramagnetic resonance (EPR) and UV-vis experiments on the active species suggest that the isomerization of VNB proceeds through a radical mechanism.  相似文献   
4.
A new "partial-discard" operation strategy was developed to improve the performance, especially purity, achievable in simulated moving bed (SMB) chromatography. This strategy was applied to the four-zone SMB process with two columns per zone for binary separation within the linear range. The "partial-discard" strategy significantly enhanced the purity or enrichment when the discard time and discard length were controlled. In addition, the "partial-feed with partial-discard" strategy improved remarkably the extract and raffinate purities at an intermediate feed time compared with the "partial-feed" operation. Adjustments of the discard length and discard time played key roles in achieving the desired product purity in SMB chromatographic performance.  相似文献   
5.
The adsorption behaviors of CO2 and CH4 on new siliceous zeolites JSR and NanJSR (n = 2, 8, 16) were simulated using the Grand Canonical Monte Carlo method. The adsorption isotherms of CO2 became higher with an increase in the Na+ number at a low pressure range (<150 kPa), whereas the isotherms showed a crossover with increasing pressure and the adsorption amount became smaller at a high pressure range (>850 kPa). With an increase in Na+ number, the pore volume decreased as the pore space was occupied by increasing Na+ ions. Additionally, two energy peaks on the interaction energy curves implied that CO2 was adsorbed on two active sites. On the other hand, the adsorption amount of CH4 decreased with an increase in the Na+ number and only one energy peak was observed. Adsorption isotherms were well fitted with the Langmuir and Freundlich equations up to 1000 kPa and the adsorption affinity of CO2 on Na16JSR zeolite was highest. The adsorption capacities of CO2 in the studied zeolites were up to 38 times higher than those of CH4. Diffusion constants of CO2 and CH4 decreased with an increase in the adsorbed amount and Na+ number. Considering the adsorbed amount, adsorption selectivity and affinity, zeolites JSR with a low Na+ number (JSR and Na2JSR) is a good candidate for a pressure swing adsorption in the separation of CO2/CH4 mixture whereas JSR zeolites with high Na+ ratios (Na16JSR and Na8JSR) may be a better selection for a vacuum swing adsorption.  相似文献   
6.
The adsorption kinetics and equilibria of CO2 in commercial zeolite 4A and CaX pellets were theoretically and experimentally studied by a gravimetric method in the range of 273–313 K and 0.0–0.8 atm. The diffusion mechanism of an adsorbate into a pellet is composed of micropore and macropore diffusion due to the bidisperse structure of the pellet. When one diffusion mechanism played a more important role than the other in determining the overall diffusion rate, the diffusion rate was estimated by the nonisothermal monodisperse diffusion model (NMDM). However, when the combined effects of both mechanisms controlled the overall adsorption kinetics, the experimental uptake was analyzed by the nonisothermal bidisperse diffusion model (NBDM). The CO2 diffusion in zeolite 4A pellets was controlled by micropore diffusion within the experimental pressure and temperature ranges. However, both macropore and micropore diffusion contributed to CO2 diffusion in the zeolite CaX pellet. The overall CO2 diffusion rate in zeolite CaX became faster as pressure increased mainly due to its highly favorable isotherm in the zeolite CaX. The micropore diffusion time constant of CO2 in the zeolite CaX pellet was approximately one hundred times greater than that in the zeolite 4A pellet. In addition, the activation energy of micropore diffusion of CO2 diffusion in the zeolite CaX pellet was smaller than that in the zeolite 4A pellet. In this study, the dimensionless parameter, , indicating the relative importance of macropore and micropore diffusion, was modified to consider non-zero coverage as an initial condition for each step in the gravimetric method. When is greater than 100, the overall adsorption rate is controlled by macropore diffusion. However, in cases where is less than 0.1, micropore diffusion is the dominant mechanism in the overall adsorption rate. In the case of a system with between these values, both macropore and micropore diffusion contributed to the overall diffusion rate.  相似文献   
7.
The effect of a soil contaminant on the initial adhesion to the soil of a contaminant-degrading soil microorganism in the exponential phase was investigated using naphthalene as the soil contaminant and Pseudomonas putida strain NCIB 9816-4 as the naphthalene-degrading bacteria. P. putida strain DK-1, which is not capable of degrading naphthalene, was used as a control. P. putida NCIB 9816-4 in the exponential phase showed the more adhesion to the soil than that in the stationary phase. In contrast, P. putida DK-1 showed the increased adhesion to the soil when it was in the stationary phase. P. putida NCIB 9816-4 in the exponential phase showed the preferred adhesion to the naphthalene-contaminated soil, whereas the adhesion of P. putida DK-1 was not affected by naphthalene. From the data of surface hydrophobicities of the cells and the soil, the microbial adhesion, especially the initial adhesion to the naphthalene-contaminated soil, takes place through the hydrophobic interaction. We suspect that the surface hydrophobicity of P. putida NCIB 9816-4 in the exponential phase might be increased during the uptake of naphthalene, which caused the preferred adhesion to the naphthalene-contaminated soil.  相似文献   
8.
9.
The backfill cycle of two-bed PSA process using activated carbon beds, zeolite 5A beds, and layered beds was studied experimentally and theoretically to recover high purity H2 from coke oven gas. In a layered bed PSA, a comparison was made between two PSA processes with/without a backfill step before the feed pressurization step. Since the backfill step made the adsorption bed rich in H2 and this led to a rather steep concentration wave front at the feed pressurization step, incorporating a backfill step resulted in an increase in product purity with a decrease in recovery. Each step of the single-adsorbent and layered bed PSA processes with a backfill step was simulated with a dynamic model incorporating mass, energy, and momentum balances. The model agreed well with the experimental results in predicting the product H2 purity and recovery, thus giving a basic understanding of the bed dynamics of a backfill cycle. While the concentration and temperature profiles of a layered bed in each step showed characteristic behavior of each adsorbent in each layer, the product purity of a layered bed was not between the limits of two single-adsorbent bed processes. The concentration profiles predicted by simulation showed that CO and N2 played an important role in obtaining high H2 purity.  相似文献   
10.
The adsorption isotherms of CO2, CO, N2, CH4, Ar, and H2 on activated carbon and zeolite LiX were measured using a volumetric method. Equilibrium experiments were conducted at 293, 308, and 323 K and pressures up to 1.0 MPa. The adsorption isotherm and heat of adsorption were analyzed for two pressure regions of experimental data: pressures up to 0.1 MPa and up to 1.0 MPa. Each experimental isotherm was correlated by the Langmuir, Sips, Toth and temperature dependent Sips isotherm models, and the deviation of each model was evaluated. The Sips and Toth models showed smaller deviation from the experimental data of adsorbents than the Langmuir model. Isosteric heats of adsorption were calculated by the temperature dependent Sips model and are presented along with surface loading. From deviation analysis, it is recommended that the isotherm in the proper pressure range be used to appropriately design adsorptive processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号