首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   0篇
化学   56篇
晶体学   2篇
数学   9篇
物理学   60篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2013年   7篇
  2012年   3篇
  2011年   4篇
  2010年   1篇
  2009年   5篇
  2008年   4篇
  2007年   6篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2003年   3篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   5篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   5篇
  1983年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1956年   1篇
  1942年   2篇
  1939年   1篇
  1937年   1篇
排序方式: 共有127条查询结果,搜索用时 31 毫秒
1.
Fumed silica, silica gel, silica-alumina and cross-linked (5.5%) polystyrene have been functionalized with quaternary ammonium groups and the Chini cluster [Pt12(CO)24]2− has been anchored onto these functionalized materials by ion pairing. A catalyst has also been prepared by the adsorption of Na2[Pt12(CO)24] on unfunctionalized fumed silica. The catalytic activities of the resultant materials, and that of commercially purchased 5% platinum on alumina have been studied for the hydrogenation of a variety of unsaturated compounds. The substrates studied are: α-acetamidocinnamic acid, cyclohexanone, acetophenone, methyl pyruvate, ethyl acetoacetate, nitrobenzene and benzonitrile. Compared to the polystyrene supported catalyst, the inorganic oxide supported catalysts have higher surface areas and for most of the substrates have notably higher activities. The functionalized fumed silica-based catalyst gives higher conversions than functionalized silica gel and silica-alumina-based catalysts. In the hydrogenation of acetophenone and ethyl acetoacetate, the functionalized fumed silica-based catalyst show superior activity compared to the commercial platinum catalyst, and the catalyst made by conventional adsorption method. In benzonitrile hydrogenation with all the cluster-derived catalysts a hydrazine derivative is selectively formed, but when the commercial platinum catalyst is used benzyl amine is the main product.  相似文献   
2.
3.
The quantum density of states of the Henon-Heiles potential displays a pronounced beating pattern. This has been explained by the interference of three isolated classical periodic orbits with nearby actions and periods. A singular magnetic flux line, passing through the origin, drastically alters the beats even though the classical Lagrangian equations of motion remain unchanged. Some of the changes can be easily understood in terms of the Aharonov-Bohm effect. However, we find that the standard periodic orbit theory does not reproduce the diffraction-like quantum effects on those classical orbits which intersect the singular flux line, and argue that corrections of relative order variant Planck's over 2pi are necessary to describe these effects. We also discuss the changes in the distribution of nearest-neighbor spacings in the eigenvalue spectrum, brought about by the flux line. (c) 1995 American Institute of Physics.  相似文献   
4.
Summary Four-coordinate nickel nitrosyl complexes of the general formula Ni(NO)X(Dppe) (Dppe=Ph2PCH2CH2PPh2) have been prepared byin situ formation of Ni(NO2)X(Dppe), (X= Cl, Br, I or SCN) followed by reduction with triphenylphosphine, or carbon monoxide, and/or DMF. Oxygenation of the nitrosyl complexes gives the corresponding nitro products and as indicated by u.v.-vis spectroscopy involves formation of an intermediate. The oxygenation rate increases markedly in the presence of light or of a catalytic amount of benzoyl peroxide and a tentative explanation is offered for these observations. Ionic adducts are formed in reactions between the nitrosyl complexes and donor molecules.Paper presented in part at the XXth ICCC Conference.  相似文献   
5.
Syntheses of substituted pyrazolo[3,4-b]quinolines, 3,4-dihydro-4-oxopyriraido[4′,5′:4,5]theino[2,3-b]quinoline and 12-phenylpyrido[1′,2′:1,2[pyrimido[4,5-b]quinoline are described.  相似文献   
6.
High nuclearity platinum carbonyl cluster anions (Chini's clusters) have been used as precursors to prepare a platinum nanocatalyst. The ionic polyelectrolyte poly(diallyldimethylammonium chloride) has been used as the support material for anchoring [Pt30(CO)60]2− via ion-pairing and subsequent stabilization of the nanoparticles. The polymer-supported material has been studied by spectroscopy (NIR, 13C NMR, and IR) and TEM before and after its use as a water soluble hydrogenation catalyst. The nanocatalyst is found to be effective for the chemoselective hydrogenation of olefinic, aldehydic and ketonic double bonds. For most of the substrates isolation of the product and reuse of the catalyst are extremely easy due to the automatic phase separation of the products from the catalyst. The spectral features of the fresh catalyst show retention of the carbonyl ligands and molecular identity of the parent cluster, but after use the carbonyl ligands appear to be lost. TEM of the supported material before and after use as a catalyst shows the presence of platinum nanoparticles with majority (≥70%) of the particles in the range of 2–6 nm. Smaller particles are dominant in the used catalyst and this observation is rationalized on the basis of the known reactivity of Chini's clusters with dihydrogen.  相似文献   
7.
The historical background of and the incentive for using ruthenium carbonyl clusters as homogeneous catalysts are outlined. Keeping in view the possible solutions the uncertainties arising from declusterification and metal colloid formation are discussed. All ruthenium cluster-catalysed reactions are broadly classified as reactions with or without carbon monoxide as one of the reactants and the basic differences between such reactions are highlighted. Some of the factors of special relevance to cluster-catalysed reaction systems are mentioned. The reactions involving carbon monoxide are then discussed. These include water-gas-shift reaction, carbon monoxide hydrogenation, hydroformylation, reductive carbonylation of nitrobenzene and other carbonylation reactions. Hydrogenation, transfer hydrogenation, isomerisation and a few other reactions are then discussed. For all these reactions, special emphasis is laid on well-characterised cluster complexes that have been proposed as catalytic intermediates. Finally an attempt has been made to identify the path that future research in cluster catalysis is likely to follow.  相似文献   
8.
A library of 24 glycoconjugates related to glycosylated beta-amino acid derivative (I) was been prepared and screened against DNA topoisomerase-II of the filarial parasite S. cervi. Among these, compound 6 was found to be a potent inhibitor of DNA topoisomerase-II with 95% inhibition at 1.09 microM. Furthermore, compound 6 was at least three times more potent than the lead compound, glycosylated beta-amino acid derivative I.  相似文献   
9.
The construction of a synthetic analogue of the A-cluster of carbon monoxide dehydrogenase/acetylcoenzyme synthase, the site of acetylcoenzyme A formation, requires as a final step the formation of an unsupported [Fe(4)S(4)]-(mu(2)-SR)-Ni(II) bridge to a preformed cluster. Our previous results (Rao, P. V.; Bhaduri, S.; Jiang, J.; Holm, R. H. Inorg. Chem. 2004, 43, 5833) and the work of others have addressed synthesis of dinuclear complexes relevant to the A-cluster. This investigation concentrates on reactions pertinent to bridge formation by examining systems containing dinuclear and mononuclear Ni(II) complexes and the 3:1 site-differentiated clusters [Fe(4)S(4)(LS(3))L'](2-) (L' = TfO(-) (14), SEt (15)). The system 14/[{Ni(L(O)-S(2)N(2))}M(SCH(2)CH(2)PPh(2))](+) results in cleavage of the dinuclear complex and formation of [{Ni(L(O)-S(2)N(2))}Fe(4)S(4)(LS(3))]- (18), in which the Ni(II) complex binds at the unique cluster site with formation of a Ni(mu(2)-SR)(2)Fe bridge rhomb. Cluster 18 and the related species [{Ni(phma)}Fe(4)S(4)(LS(3))](3)- (19) are obtainable by direct reaction of the corresponding cis-planar Ni(II)-S(2)N(2) complexes with 14. The mononuclear complexes [M(pdmt)(SEt)]- (M = Ni(II), Pd(II)) with 14 in acetonitrile or Me(2)SO solution react by thiolate transfer to give 15 and [M(2)(pdmt)(2)]. However, in dichloromethane the Ni(II) reaction product is interpreted as [{Ni(pdmt)(mu(2)-SEt)}Fe(4)S(4)(LS(3))](2-) (20). Reaction of Et(3)NH(+) and 15 affords the double cubane [{Fe(4)S(4)(LS(3))}(2)(mu(2)-SEt)](3-) (21). Cluster 18 contains two mutually supportive Fe-(mu(2)-SR)-Ni(II) bridges, 19 exhibits one strong and one weaker bridge, 20 has one unsupported bridge (inferred from the (1)H NMR spectrum), and 21 has one unsupported Fe-(mu(2)-SR)-Fe bridge. Bridges in 18, 19, and 21 were established by X-ray structures. This work demonstrates that a bridge of the type found in the enzyme A-clusters is achievable by synthesis and implies that more stable, unsupported single thiolate bridges may require reinforcement by an additional covalent linkage between the Fe(4)S(4) and nickel-containing components. (LS(3) = 1,3,5-tris((4,6-dimethyl-3-mercaptophenyl)thio)-2,4,6-tris(p-tolylthio)benzene(3-); L(O)-S(2)N(2) = N,N'-diethyl-3,7-diazanonane-1,9-dithiolate(2-); pdmt = pyridine-2,6-methanedithiolate(2-); phma = N,N'-1,2-phenylenebis(2-acetylthio)acetamidate(4-); TfO = triflate.).  相似文献   
10.
The 3 MnIV title compound has been prepared and characterized by X-ray crystallography and magnetochemistry; the complex contains a [Mn(mu-O)2Mn(mu-O)2Mn]4+ core and possesses an S = 3/2 ground state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号