首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60篇
  免费   0篇
化学   16篇
力学   1篇
数学   4篇
物理学   39篇
  2012年   2篇
  2011年   3篇
  2009年   3篇
  2008年   1篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   4篇
  1999年   7篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   7篇
  1993年   4篇
  1992年   1篇
  1989年   2篇
  1986年   2篇
  1985年   2篇
排序方式: 共有60条查询结果,搜索用时 328 毫秒
1.
The weakly pinned single crystals of the hexagonal 2H-NbSe2 compound have emerged as prototypes for determining and characterizing the phase boundaries of the possible order-disorder transformations in the vortex matter. We present here a status report based on the ac and dc magnetization measurements of the peak effect phenomenon in three crystals of 2H-NbSe2, in which the critical current densities vary over two orders of magnitude. We sketch the generic vortex phase diagram of a weakly pinned superconductor, which also utilizes theoretical proposals. We also establish the connection between the metastability effects and pinning.  相似文献   
2.
The hydrophilic oxygen atoms of polyethylenoxide chains inserted as pillars in gamma-zirconium phosphate form hydrogen bonds with the acid groups of the host. As a result the pillars are almost perpendicular to the gamma layers. Upon changing the pH level of the supernatant solution the hydrogen bonds are broken and the pillars become almost perpendicular to the layers (shown schematically). Thus there is a reversible enlargement-shortening of the interlayer space.  相似文献   
3.
4.
5.
We show an experimental approach for directly observing the condensation of polynucleotides and their electrolyte counterions at a liquid/solid interface. X-ray standing waves (XSW) generated by Bragg diffraction from a d = 20 nm Si/Mo multilayer substrate are used to measure the distinct distribution profiles of the polyanions and simple cations along the surface normal direction with subnanometer resolution. The 1D spatial sensitivity of this approach is enhanced by observing the XSW induced fluorescence modulations over multiple orders of Bragg peaks. We study the interesting divalent cation driven adsorption of anionic polynucleotides to anionic surfaces by exposing a hydroxyl-terminated silica surface to an aqueous solution with ZnCl2 and mercurated poly-uridylic acid (a synthetic RNA molecule). The in situ long-period XSW measurements are used to follow the evolution of both the Zn and Hg distribution profiles during the adsorption process. The conditions and physical mechanisms that govern the observed divalent cation adsorption and subsequent polynucleotide adsorption to an anionic surface are explained by a thermodynamic model that incorporates nonlinear electrostatic effects.  相似文献   
6.
A comprehensive picture of the interface between aqueous solutions and the (110) surface of rutile (alpha-TiO2) is being developed by combining molecular-scale and macroscopic approaches, including experimental measurements, quantum calculations, molecular simulations, and Gouy-Chapman-Stern models. In situ X-ray reflectivity and X-ray standing-wave measurements are used to define the atomic arrangement of adsorbed ions, the coordination of interfacial water molecules, and substrate surface termination and structure. Ab initio calculations and molecular dynamics simulations, validated through direct comparison with the X-ray results, are used to predict ion distributions not measured experimentally. Potentiometric titration and ion adsorption results for rutile powders having predominant (110) surface expression provide macroscopic constraints of electrical double layer (EDL) properties (e.g., proton release) which are evaluated by comparison with a three-layer EDL model including surface oxygen proton affinities calculated using ab initio bond lengths and partial charges. These results allow a direct correlation of the three-dimensional, crystallographically controlled arrangements of various species (H2O, Na+, Rb+, Ca2+, Sr2+, Zn2+, Y3+, Nd3+) with macroscopic observables (H+ release, metal uptake, zeta potential) and thermodynamic/electrostatic constraints. All cations are found to be adsorbed as "inner sphere" species bonded directly to surface oxygen atoms, while the specific binding geometries and reaction stoichiometries are dependent on ionic radius. Ternary surface complexes of sorbed cations with electrolyte anions are not observed. Finally, surface oxygen proton affinities computed using the MUSIC model are improved by incorporation of ab initio bond lengths and hydrogen bonding information derived from MD simulations. This multitechnique and multiscale approach demonstrates the compatibility of bond-valence models of surface oxygen proton affinities and Stern-based models of the EDL structure, with the actual molecular interfacial distributions observed experimentally, revealing new insight into EDL properties including specific binding sites and hydration states of sorbed ions, interfacial solvent properties (structure, diffusivity, dielectric constant), surface protonation and hydrolysis, and the effect of solution ionic strength.  相似文献   
7.
Using resonant x-ray spectroscopies combined with density functional calculations, we find an asymmetric biaxial strain-induced d-orbital response in ultrathin films of the correlated metal LaNiO3 which are not accessible in the bulk. The sign of the misfit strain governs the stability of an octahedral "breathing" distortion, which, in turn, produces an emergent charge-ordered ground state with an altered ligand-hole density and bond covalency. Control of this new mechanism opens a pathway to rational orbital engineering, providing a platform for artificially designed Mott materials.  相似文献   
8.
The atomic-scale structural changes in an α-Fe2O3 (hematite) (0 0 0 1) surface induced by sulfidation and subsequent oxidation processes were studied by X-ray photoemission spectroscopy, LEED, and X-ray standing wave (XSW) measurements. Annealing the α-Fe2O3(0 0 0 1) with a H2S partial pressure of 1 × 10−7 Torr produced iron sulfides on the surface as the sulfur atoms reacted with the substrate Fe ions. The oxidation state of the substrate Fe changed from 3+ to 2+ as a result of the sulfidation. The XSW measured distance of the sulfur atomic-layer from the unrelaxed substrate oxygen layer was 3.16 Å. The sulfide phase consisted of three surface domains identified by LEED. Formation of the two-dimensional FeS2 phase with structural parameters consistent with an outermost layer of (1 1 1) pyrite has been proposed. Atomic oxygen exposure oxidized the surface sulfide to a sulfate () and regenerated the α-Fe2O3(0 0 0 1) substrate, which was indicated by a (1 × 1) LEED pattern and the re-oxidization of Fe to 3+.  相似文献   
9.
10.
Characterization of lead substitution for calcium in hydroxyapatite (CaHA) is carried out, using experimental techniques and Density Functional theoretical (DFT) analyses. Theoretical modeling is used to obtain information of the Pb chemical environment for occupancy at either Ca(I) or Ca(II) sites of CaHA. Effects of the larger ionic radius of Pb(+2) compared to Ca(+2) are apparent in embedded cluster calculations of local chemical bonding properties. DFT periodic planewave pseudopotential studies are used to provide first-principles predictions of local structural relaxation and site preference for Pb(x)Ca(10-x)HA over the composition range x< or = 6. General characteristics of the polycrystalline material are verified by X-ray diffraction and FTIR analysis, showing the presence of a single phase of CaHA structure. A short range structure around lead is proposed in order to interpret the Pb L-edge EXAFS spectrum of the solid solution Ca(6.6)Pb(3.4)HA. In this concentration we observe that lead mainly occupies Ca(II) sites; the EXAFS fit slightly favors Pb clustering, while theory indicates the importance of Pb-Pb avoidance on site (II).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号