首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
化学   8篇
数学   1篇
  2018年   2篇
  2008年   2篇
  2006年   2篇
  2005年   2篇
  1998年   1篇
排序方式: 共有9条查询结果,搜索用时 140 毫秒
1
1.
A chiral stationary phase (CSP) has been prepared by chemically bonding a chiral pseudo-18-crown-6 type host having a 1-phenyl-1,2-cyclohexanediol unit to 3-aminopropyl silica gel. The chiral column was prepared by the slurry-packing method in a stainless steel HPLC column. Normal mobile phases can be used with this CSP in contrast to conventional dynamic coating type CSPs. Enantiomers of 20 out of 30 amino compounds, including 20 amino acids, 2 amino acid methyl esters, 6 amino alcohols, and 2 lipophilic amines, were efficiently separated on columns with this CSP. It is noteworthy that 15 amino compounds out of 30 were separated with better separation factors and shorter retention times compared to the corresponding CSP having pseudo-18-crown-6 with 1-phenyl-1,2-ethanediol as a chiral unit. In view of the correlation between the enantiomer selectivities observed in chromatography and those obtained in gas phase FABMS-EL methods and solution phase titrations, chiral recognition in the host-guest interaction likely contributes to enantiomer separation.  相似文献   
2.
3.
An Y  Cooper JW  Balgley BM  Lee CS 《Electrophoresis》2006,27(18):3599-3608
Besides the complexity in protein samples of biological origin, probably the greatest challenge presently facing comprehensive proteome analysis is related to the large variation of protein relative abundances (>6 orders of magnitude), having potential biological significance in mammalian systems. As demonstrated in this work, transient capillary ITP/zone electrophoresis (CITP/CZE) provides selective analyte enrichment through electrokinetic stacking and extremely high resolving power toward protein and peptide mixtures. The result of the CITP process is that major components may be diluted, but trace compounds are concentrated. The on-column transition of CITP to CZE minimizes additional band broadening while providing superior analyte resolution. Online coupling of transient CITP/CZE with nano-ESI-MS allows ultrasensitive detection of trace peptides at levels of subnanomolar concentration or subfemtomole mass in complex peptide mixtures. More importantly, selective enrichment of trace peptides enables the identification and sequence analysis of low-abundance peptides co-migrated with highly abundant species at a concentration ratio of 1:500,000. The combined CITP/CZE-nano-ESI-MS system is demonstrated to be at least one to two orders of magnitude more sensitive than that attained in conventional electrophoretic and chromatographic-based proteome technologies over a wide dynamic concentration range, potentially allowing comprehensive analysis of protein profiles within a small cell population and limited tissue samples using conventional mass spectrometers. Furthermore, the speed of CITP/CZE separation and the lack of column equilibration in CITP/CZE not only improve the throughput of proteome analysis, but also facilitate its seamless integration with other separation technologies in a multidimensional protein identification platform.  相似文献   
4.
By employing a capillary ITP (CITP)/CZE-based proteomic technology, a total of 1795 distinct mouse Swiss-Prot protein entries (or 1705 nonredundant proteins) are identified from synaptic mitochondria isolated from mouse brain. The ultrahigh resolving power of CITP/CZE is evidenced by the large number of distinct peptide identifications measured from each CITP fraction together with the low peptide fraction overlapping among identified peptides. The degree of peptide overlapping among CITP fractions is even lower than that achieved using combined CIEF/nano-RP LC separations for the analysis of the same mitochondrial sample. When evaluating the protein sequence coverage by the number of distinct peptides mapping to each mitochondrial protein identification, CITP/CZE similarly achieves superior performance with 1041 proteins (58%) having 3 or more distinct peptides, 233 (13%) having 2 distinct peptides, and 521 (29%) having a single distinct peptide. The reproducibility of protein identifications is found to be around 86% by comparing proteins identified from repeated runs of the same mitochondrial sample. The analysis of the mouse mitochondrial proteome by two CITP/CZE runs results in the detection of 2095 distinct mouse Swiss-Prot protein entries (or 1992 nonredundant proteins), corresponding to 59% coverage of the updated Maestro mitochondrial reference set. The collective analysis from combined CITP/CZE and CIEF-based proteomic studies yields the identification of 2191 distinct mitochondrial protein entries (or 2082 nonredundant proteins), corresponding to 76% coverage of the MitoP2-database reference set.  相似文献   
5.
It is well known that, for stepsize sufficiently small, compactattractors of ordinary differential equations persist underdiscretization. The present paper describes the structure ofthe discrete-time dynamical system obtained via discretizationon A(Mh)\Mh where Mh is the approximate attractor and A(Mh)is its domain of attraction. The existence of a smooth embeddinginto a continuous-time parallelizable flow is proved. The constructioncan be used to define sections for discretizations and can beinterpreted as a justification of the method of modified equations.  相似文献   
6.
Balgley BM  Wang W  Song T  Fang X  Yang L  Lee CS 《Electrophoresis》2008,29(14):3047-3054
Multidimensional separations of the peptides resulting from enzymatic digestions of complex protein mixtures prior to MS/MS, namely shotgun proteomics, is increasingly utilized for large-scale identification and quantitation of proteins. Inherent to the performance of proteomic measurements is the resolving power of each of the separations both separately and in combination. By simply raising the number of CIEF fractions, the resulting enhancement in the overall peak capacity of combined CIEF/nano-RPLC separations greatly reduces the complexity of eluted peptides prior to MS detection and sequencing and increases the proteome coverage. The capabilities of the CIEF-based proteome platform coupled with the spectral counting approach to confidently and reproducibly quantify proteins and changes in protein expression levels among samples are evaluated. Analytical reproducibility of relative protein abundance is determined to exhibit a Pearson R(2) value greater than 0.99 and a CV of 14.1%. The platform is demonstrated to be capable of measuring changes in protein expression as low as 1.5-fold, with confidence following multiple testing adjustment.  相似文献   
7.
Guo T  Lee CS  Wang W  DeVoe DL  Balgley BM 《Electrophoresis》2006,27(18):3523-3532
Development of the capability to enable large-scale proteome studies, analogous to comprehensive gene expression analysis, will clearly have far-reaching impacts on protein biomarker investigations of human diseases such as cancer through interrogation of the archived fresh frozen and formalin-fixed and paraffin-embedded tissue collections. This review therefore focuses on the most recent advances in microdissection techniques and proteome platforms for procuring homogeneous subpopulations of tumor cells or structures and performing comprehensive analysis of protein profiles within tissue specimens, respectively. Developments in capillary separations capable of providing extremely high resolving power and selective analyte enrichment are particularly highlighted for their roles within the broader context of a state-of-the-art integrated tissue proteome effort. The capabilities of CIEF-based multidimensional separations for performing proteome analysis from minute samples create new opportunities in the pursuit of biomarker discovery using enriched and selected cell populations procured from tissue specimens. These proteome technological advances combined with recently developed tissue microdissection techniques provide powerful tools for those seeking to gain a greater understanding at the global level of the cellular machinery associated with human diseases such as cancer.  相似文献   
8.
Electrospray interfacing of polymer microfluidics to MALDI-MS   总被引:1,自引:0,他引:1  
The off-line coupling of polymer microfluidics to MALDI-MS is presented using electrospray deposition. Using polycarbonate microfluidic chips with integrated hydrophobic membrane electrospray tips, peptides and proteins are deposited onto a stainless steel target followed by MALDI-MS analysis. Microchip electrospray deposition is found to yield excellent spatial control and homogeneity of deposited peptide spots, and significantly improved MALDI-MS spectral reproducibility compared to traditional target preparation methods. A detection limit of 3.5 fmol is demonstrated for angiotensin. Furthermore, multiple electrospray tips on a single chip provide the ability to simultaneously elute parallel sample streams onto a MALDI target for high-throughput multiplexed analysis. Using a three-element electrospray tip array with 150 microm spacing, the simultaneous deposition of bradykinin, fibrinopeptide, and angiotensin is achieved with no cross talk between deposited samples. In addition, in-line proteolytic digestion of intact proteins is successfully achieved during the electrospray process by binding trypsin within the electrospray membrane, eliminating the need for on-probe digestion prior to MALDI-MS. The technology offers promise for a range of microfluidic platforms designed for high-throughput multiplexed proteomic analyses in which simultaneous on-chip separations require an effective interface to MS.  相似文献   
9.
We demonstrate the mediation of charge transport and release in thin films and devices by shifting the redox properties of layers of metal complexes by light. The nanoscale surface arrangement of both photo‐ and electrochemically‐active components is essential for the function of the thin films. Layers of well‐defined ruthenium complexes on indium‐tin‐oxide electrodes provide electron‐transport channels that allow the electrochemical addressing of layers of isostructural cobalt complexes. These cobalt complexes are electrochemically inactive when assembled directly on transparent metal‐oxide electrodes. The interlayer of ruthenium complexes on such electrodes allows irreversible oxidation of the cobalt complexes. However, shifting the redox properties of the ruthenium complexes by excitation with light opens up an electron‐transport channel to reduce the cobalt complexes; hence releasing the trapped positive charges.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号