首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   4篇
化学   16篇
数学   1篇
  2022年   1篇
  2019年   2篇
  2016年   2篇
  2015年   2篇
  2013年   4篇
  2012年   3篇
  2010年   1篇
  2006年   1篇
  1998年   1篇
排序方式: 共有17条查询结果,搜索用时 19 毫秒
1.
Integral membrane proteins play central roles in controlling the flow of information and molecules across membranes. Our understanding of membrane protein structures and functions, however, is seriously limited, mainly due to difficulties in handling and analysing these proteins in aqueous solution. The use of a detergent or other amphipathic agents is required to overcome the intrinsic incompatibility between the large lipophilic surfaces displayed by the membrane proteins in their native forms and the polar solvent molecules. Here, we introduce new tripod amphiphiles displaying favourable behaviours toward several membrane protein systems, leading to an enhanced protein solubilisation and stabilisation compared to both conventional detergents and previously described tripod amphiphiles.  相似文献   
2.
3.
4.
Huang B  Wu H  Kim S  Kobilka BK  Zare RN 《Lab on a chip》2006,6(3):369-373
Polydimethylsiloxane (PDMS) surfaces can be functionalized with biotin groups by adding biotinylated phospholipids to the PDMS prepolymer before curing. The addition of beta-D-dodecyl-N-maltoside (DDM) in the solution blocks non-specific protein binding on these functionalized PDMS surfaces. We characterize the surface by measuring fluorescently labeled streptavidin binding. Single molecule tracking shows that the phospholipids are not covalently linked to PDMS polymer chains, but the surface functionalization is not removed by washing. We demonstrate the immobilization of biotinylated antibodies and lectins through biotin-avidin interactions.  相似文献   
5.
Amphipathic agents are widely used in various fields including biomedical sciences. Micelle-forming detergents are particularly useful for in vitro membrane-protein characterization. As many conventional detergents are limited in their ability to stabilize membrane proteins, it is necessary to develop novel detergents to facilitate membrane-protein research. In the current study, we developed novel trimaltoside detergents with an alkyl pendant-bearing terphenyl unit as a hydrophobic group, designated terphenyl-cored maltosides (TPMs). We found that the geometry of the detergent hydrophobic group substantially impacts detergent self-assembly behavior, as well as detergent efficacy for membrane-protein stabilization. TPM-Vs, with a bent terphenyl group, were superior to the linear counterparts (TPM-Ls) at stabilizing multiple membrane proteins. The favorable protein stabilization efficacy of these bent TPMs is likely associated with a binding mode with membrane proteins distinct from conventional detergents and facial amphiphiles. When compared to n-dodecyl-β-d -maltoside (DDM), most TPMs were superior or comparable to this gold standard detergent at stabilizing membrane proteins. Notably, TPM-L3 was particularly effective at stabilizing the human β2 adrenergic receptor (β2AR), a G-protein coupled receptor, and its complex with Gs protein. Thus, the current study not only provides novel detergent tools that are useful for membrane-protein study, but also suggests a critical role for detergent hydrophobic group geometry in governing detergent efficacy.  相似文献   
6.
7.
3,7-Diiodo-2,6-di(thiophen-2-yl)benzo[1,2-b:4,5-b']difurans are efficiently prepared by an iodine-promoted double cyclization. This new heterocyclic core is readily modified by the attachment of alkyl chains for improved solubility. The use of these compounds for the synthesis of new conjugated polymers is also reported.  相似文献   
8.
Membrane proteins are of biological and pharmaceutical significance. However, their structural study is extremely challenging mainly due to the fact that only a small number of chemical tools are suitable for stabilizing membrane proteins in solution. Detergents are widely used in membrane protein study, but conventional detergents are generally poor at stabilizing challenging membrane proteins such as G protein-coupled receptors and protein complexes. In the current study, we prepared tandem triazine-based maltosides (TZMs) with two amphiphilic triazine units connected by different diamine linkers, hydrazine (TZM−Hs) and 1,2-ethylenediamine (TZM−Es). These TZMs were consistently superior to a gold standard detergent (DDM) in terms of stabilizing a few membrane proteins. In addition, the TZM−Es containing a long linker showed more general protein stabilization efficacy with multiple membrane proteins than the TZM−Hs containing a short linker. This result indicates that introduction of the flexible1,2-ethylenediamine linker between two rigid triazine rings enables the TZM−Es to fold into favourable conformations in order to promote membrane protein stability. The novel concept of detergent foldability introduced in the current study has potential in rational detergent design and membrane protein applications.  相似文献   
9.
We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles.  相似文献   
10.
Three conjugated polymers comprised of dioctyl‐dithieno‐[2,3‐b:2',3'‐d]silole and a donor‐acceptor‐donor triad of either cis‐benzbisoxazole, trans‐benzobisoxazole or trans‐benzobisthiazole were synthesized via the Stille cross‐coupling reaction. The impact of varying the heteroatoms and/or the location within the benzobisazole moiety on the optical and electronic properties of the resulting polymers was evaluated via cyclic voltammetry and UV‐Visible spectroscopy. All of the polymers have similar optical band‐gaps of ~1.9 eV and highest occupied molecular orbital levels of ? 5.2 eV. However, the lowest unoccupied molecular orbitals (LUMO) ranged from ? 3.0 to ? 3.2 eV. Interestingly, when the polymers were used as donor materials in bulk‐heterojunction photovoltaic cells with PC71BM as the electron‐acceptor, the benzobisoxazole‐based polymers gave slightly better results than the benzobisthiazole‐containing polymers with power conversion efficiencies up to 3.5%. These results indicate that benzobisoxazoles are promising materials for use in OPVs. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1533–1540  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号