首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   1篇
化学   28篇
物理学   1篇
  2021年   1篇
  2020年   1篇
  2015年   1篇
  2012年   3篇
  2008年   1篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   3篇
  2002年   3篇
  1997年   3篇
  1989年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有29条查询结果,搜索用时 31 毫秒
1.
A three-dimensional quasiclassical trajectory study of the dynamics of the light atom transfer reaction O(3P) + HCl(ν=0)→ OH + Cl was carried out employing two LEPS potential energy surfaces (I and II). Attention was focused mainly on three-dynamical properties; the oscillatory behavior of partial cross sections as a function of collision energy; the rotational excitation of the products; and the influence of reagent rotation on reactivity. Distinct differences were found between surfaces I and II with respect to these properties. The examination of individual trajectories indicated that there is a significant difference in the nature of these surfaces. While surface I is governed by weak repulsive forces, surface II is governed by strong attractive forces which tend to direct the reactants toward a collinear geometry. The present results confirm conclusions reached from an earlier study of the reaction Cl+HCl→ClH+Cl concerning correlations between dynamical properties and features of potential energy surfaces. For surfaces of the type that we termed HREP, since they are of repulsive nature and they lead to highly rotationally excited products, no significant oscillations of partial cross sections are obtained and reagent rotation promotes the reaction. On the other hand, for surfaces of the type that we termed COLD (collinearly directing), since they tend to direct the reactants toward a collinear geometry and form rotationally “cold” products, significant oscillations of partial cross sections are obtained and reagent rotation causes a decline in reactivity.  相似文献   
2.
Purpose: Vascular targeted photodynamic therapy (VTP) is a nonsurgical tumor ablation approach used to treat early-stage prostate cancer and may also be effective for upper tract urothelial cancer (UTUC) based on preclinical data. Toward increasing response rates to VTP, we evaluated its efficacy in combination with concurrent PD-1 inhibitor/OX40 agonist immunotherapy in a urothelial tumor-bearing model. Experimental design: In mice allografted with MB-49 UTUC cells, we compared the effects of combined VTP with PD-1 inhibitor/OX40 agonist with those of the component treatments on tumor growth, survival, lung metastasis, and antitumor immune responses. Results: The combination of VTP with both PD-1 inhibitor and OX40 agonist inhibited tumor growth and prolonged survival to a greater degree than VTP with either immunotherapeutic individually. These effects result from increased tumor infiltration and intratumoral proliferation of cytotoxic and helper T cells, depletion of Treg cells, and suppression of myeloid-derived suppressor cells. Conclusions: Our findings suggest that VTP synergizes with PD-1 blockade and OX40 agonist to promote strong antitumor immune responses, yielding therapeutic efficacy in an animal model of urothelial cancer.  相似文献   
3.
4.
Bacteriochlorophyll (BChl) derivatives (with central Mg replaced by metal "M") ([M]-BChl with M = 2H, Mg, Zn, Pd, Cu) have been investigated for their photodynamic capacity and stability toward photodegradation in organic solvents and aqueous micellar solution. A protocol has been developed for screening new sensitizers. BChl and [Zn]-BChl are efficient sensitizers, but they are also quickly degraded by the reactive oxygen species (ROS) produced by autosensitization, as well as by hetero-sensitization with 17(4)-methyl-13(2)-demethoxycarbonyl-pheophorbide a (MPP). Photostable [Cu]-BChl is a poor sensitizer, whereas [Pd]-BChl and bacteriopheophytin a are not only very efficient sensitizers but are also very stable toward ROS. beta-Carotene is no efficient physical quencher of ROS in the system; rather, it acts as a photochemical quencher that competes with [M]-BChl and undergoes photooxygenation at high rates. Photolability seems to depend on the pigment oxidation potential and, in parallel, on the presence of central metals preferring coordination numbers higher than 4, whereas photodynamic capacity depends on long excited state life-times of the pigment or efficient intersystem crossing (or both).  相似文献   
5.
Hydrogen bonds play an important role in an overwhelming variety of fields from biology to surface and supramolecular chemistry. The term "hydrogen bond" refers to a wide range of interactions with various covalent and polar contributions. In particular, hydrogen bonds have an important role in the folding and packing of peptides and nucleic acids. Recent studies also point to the importance of hydrogen bonding in the context of second-shell interactions, in metal binding and selectivity in metalloproteins, and in controlling the dynamics of membrane proteins. In this study, we demonstrate and quantify the modulation of fragmental charge transfer from hydrogen-bonded ligands to a metal center, by employing our recently introduced molecular potentiometer. The molecular details that affect this type of fragmental charge transfer are presented and a path for transferring chemical information is demonstrated. We found that H-bond interactions in the extended positions of axial ligands provide an effective means of modulating the amount of fragmental charge transfer to a metal center, thereby dramatically influencing the electronic properties of the ligand, the binding affinity, and the binding of additional ligands. The magnitude of fragmental charge-transfer modulation induced by a single ligand-solvent H-bond interaction is comparable to those induced by covalent substitution, although H-bond enthalpy is only on the order of several kilojoules per mole. Importantly, we find a significant change in the ligand electronic properties, even for weak C-H...O=C H-bond formation, where the bond enthalpy is substantially lower than for conventional H-bond interactions. The excess fragmental charge transferred to the metal center, deduced from the spectroscopic measurements, correlates well with the computationally determined values. Our findings underscore the importance of second-shell interactions in the active sites of enzymes, beyond the structural and electrostatic importance that is widely recognized today.  相似文献   
6.
Antimicrobial cationic amphiphiles derived from aminoglycoside pseudo‐oligosaccharide antibiotics interfere with the structure and function of bacterial membranes and offer a promising direction for the development of novel antibiotics. Herein, we report the design and synthesis of cationic amphiphiles derived from the pseudo‐trisaccharide aminoglycoside tobramycin and its pseudo‐disaccharide segment nebramine. Antimicrobial activity, membrane selectivity, mode of action, and structure–activity relationships were studied. Several cationic amphiphiles showed marked antimicrobial activity, and one amphiphilic nebramine derivative proved effective against all of the tested strains of bacteria; furthermore, against several of the tested strains, this compound was well over an order of magnitude more potent than the parent antibiotic tobramycin, the membrane‐targeting antimicrobial peptide mixture gramicidin D, and the cationic lipopeptide polymyxin B, which are in clinical use.  相似文献   
7.
Abstract This study hypothesized that success rate assessment of vascular targeted photodynamic therapy (VTP) of solid tumors 24 h post-treatment may allow prompt administration of a second treatment in case of failure, increasing the overall success rate. Here, we show that treatment of luciferase transfected CT26-luc mouse colon carcinoma tumors in BALB/c mice by VTP with WST11 (a Pd-bacteriochlorophyll-based photosensitizer) allows fast assessment of treatment success 24 h post-treatment, using bioluminescence imaging (BLI). WST11-VTP was found to abolish luciferin bioluminescence in the treated tumors resulting in two types of responses. One, comprising 75% of the mice, signified successful outcome, presenting neither BLI signal nor tumor regrowth (24 h-90 days post-VTP). The second (the remaining 25% of the mice) signified treatment failure, presenting various levels of BLI signal with subsequent tumor regrowth (24 h-90 days). Consequently, the mice that failed the first treatment were treated again. We show that treatment success rate in both VTP sessions was identical and that the cumulative success rate of the treatment increased from 75% to over 90%. These results therefore, present a fast method of assessing VTP outcome and support the feasibility of successive multiple treatments with these sensitizers in the clinical arena. The presented methodology can also be helpful in future preclinical studies, and expedite the development of VTP drugs.  相似文献   
8.
Abstract— A model for studying the efficiency of photodynamic action with a photosensitizer placed exclusively on the bacterial cell wall has been used. Bacteriochlorophyllide molecules, conjugated to rabbit immunoglobulin G (IgG), were synthesized. The conjugated pigment bacteriochlo-rophyll (Bchl)-IgG bound with high specificity to protein-A residues naturally exposed on the cell wall of the bacterium Staphylococcus aureus Cowan I. In bacterial suspensions the phototoxicity of the targeted conjugates (0.5-2.5 pigment per IgG molecule) was dose dependent (LD50= 1.7 μ M ) in the presence of light (Λ > 550 nm) and inhibited by native IgG but not by ovalbumin, suggesting selective interaction with protein-A on the bacterial cell wall. No dark toxicity was noticed even with the highest conjugate concentration tested. In contrast, the photocytotoxicity of bacteriochlorophyll-serine (Bchl-Ser, LD50= 0.07 μ M ) used as a nontargeted control was not inhibited by IgG. In spite of its lower apparent potency, Bchl-IgG was found to be 30 times more efficacious than Bchl-Ser: At LD50, only 66000 Bchl-IgG molecules were bound per bacterium compared to 1900 000 molecules of Bchl-Ser. The higher efficacy of Bchl-IgG is explained by its exclusive position on the bacterial cell wall. Consequently, photogeneration of oxidative species is confined to the cell wall and its vicinity, a seemingly highly susceptible domain for photodynamic action. In considering the design of cell-specific sensitizers for bacterial and cancer therapies, it would be beneficial to identify the more discretely sensitive subcellular domains as targets.  相似文献   
9.
The photoexcited triplet states of chlorophyll à and b are studied by the EPR method at ≈85 K using modulated light excitation. Both compounds show anomalous EPR line intensities and transient kinetics, indicating electron spin polarization (ESP) in the photoexcited triplet state. EPR studies, using Mg-tetraphenyl porphyrin (MgTPP) dissolved in n-octane show that ESP occurs also in that solvent. It is shown that the zero field splitting (ZFS) parameters of MgTPP depend strongly on the solvent. From the analysis of the data for chlorophyll a and b we evaluate: (1) the population rate constants (kp); (2) the ratio between the population rate constants (Ap) (p = x, y, z) and, (3) the spin lattice relaxation rate W. In both chlorophylls the in-plane component, x, is predominantly populated and depopulated. The ZFS parameters have been also determined for the above compounds.  相似文献   
10.
Generation of reactive oxygen species (ROS) is the hallmark of important biological processes and photodynamic therapy (PDT), where ROS production results from in situ illumination of certain dyes. Here we test the hypothesis that the yield, fate, and efficacy of the species evolved highly depend on the dye's environment. We show that Pd-bacteriopheophorbide (Pd-Bpheid), a useful reagent for vascular targeted PDT (VTP) of solid tumors, which has recently entered into phase II clinical trials under the code name WST09 (trade name TOOKAD), forms appreciable amounts of hydroxyl radicals, superoxide radicals, and probably hydrogen peroxide in aqueous medium but not in organic solvents where singlet oxygen almost exclusively forms. Evidence is provided by pico- and nanosecond time-resolved spectroscopies, ESR spectroscopy with spin-traps, time-resolved singlet oxygen phosphorescence, and chemical product analysis. The quantum yield for singlet oxygen formation falls from approximately 1 in organic solvents to approximately 0.5 in membrane-like systems (micelles or liposomes), where superoxide and hydroxyl radicals form at a minimal quantum yield of 0.1%. Analysis of photochemical products suggests that the formation of oxygen radicals involves both electron and proton transfer from (3)Pd-Bpheid at the membrane/water interface to a colliding oxygen molecule, consequently forming superoxide, then hydrogen peroxide, and finally hydroxyl radicals, with no need for metal catalysis. The ability of bacteriochlorophyll (Bchl) derivatives to form such radicals upon excitation at the near infrared (NIR) domain opens new avenues in PDT and research of redox regulation in animals and plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号