首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   1篇
化学   16篇
  2023年   1篇
  2021年   2篇
  2020年   3篇
  2018年   2篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有16条查询结果,搜索用时 171 毫秒
1.
陈规伟  龚正良 《电化学》2021,27(1):76-82
石榴石固体电解质由于其高的离子电导率,对锂金属稳定等优点成为了下一代高性能锂电池的重要研究方向之一。但锂金属负极界面浸润性与锂枝晶问题限制了其应用。本文通过简单的液相沉积结合高温烧结的方法,在石榴石固体电解质片表面构建了一层稳定的硼酸三锂(Li3BO3)修饰层。研究表明,Li3BO3修饰层可以有效改善石榴石固体电解质与锂金属负极界面接触,促进锂的均匀沉积/溶出,从而抑制锂枝晶生长,提高界面稳定性。Li3BO3修饰后石榴石电解质片与锂金属之间紧密结合,Li/石榴石界面阻抗由修饰前的1780 Ω·cm2降低至58 Ω·cm2。得益于界面接触的改善,Li3BO3修饰后的LLZTO电解质组装的对称电池可以在0.1 m·cm-2的电流密度下稳定工作超过700 h。而未修饰的对称电池在0.05 mA·cm-2的电流密度下短时间工作即出现微短路现象。  相似文献   
2.
本文以工业硅粉(600目)为原料,通过高能球磨和热解包碳方法制备了碳包覆纳米硅,在此基础上采用简单的机械球磨方法制备了碳包覆/石墨复合材料,并系统研究了碳包覆量及硅/石墨比例对碳包覆硅/石墨复合材料电化学性能的影响.与商业纳米硅粉/石墨复合材料相比,工业硅粉/石墨复合材料的循环性能及倍率性能均得到改善.通过高能球磨和热处理法得到的碳包覆材料为无定形碳和晶态硅材料的复合,所获碳包覆硅材料一次颗粒的粒径在100~200 nm左右.碳包覆量对材料的电化学性能有着重要影响,Si/C-2-1复合材料表现出高的可逆比容量、良好的倍率性能和循环稳定性,在0.1C倍率下,可逆比容量高达492.6 mA h·g~(-1),循环100周后容量保持率达85.8%,1C电流密度下放电比容量达369.7 mAh·g~(-1),为0.1C的73.9%.提高碳包覆硅/石墨复合材料中硅含量的比例可以提升其比容量,当硅含量达到20%时,Si/C-2-3复合材料在0.1C倍率下可逆比容量达到600.4 mAh·g~(-1),但材料循环性能有所下降,说明石墨在稳定硅/碳复合材料循环性能方面发挥着非常重要的作用.  相似文献   
3.
采用溶胶凝胶法制备Na3V2(PO4)2F3/C复合材料,该材料具有优异的电化学循环性能和倍率性能.利用电化学原位同步辐射X射线衍射(XRD)及魔角旋转固体核磁共振(MASSS-NMR)技术研究了Na3V2(PO4)2F3材料充放电过程中结构变化过程及Li/Na嵌入-脱出反应.研究结果表明,Na3V2(PO4)2F3的电极反应按嵌入-脱出反应机理进行,充放电过程中材料具有优异的结构稳定性.我们还发现Na3V2(PO4)2F3与电解液接触后与电解液中的Li+发生部分交换反应形成LixNa3-xV2(PO4)2F3.在首次充电时,Li+和结构中Na1位置的Na+共同从晶格中脱出;而首次放电过程中,Na+和Li+共同嵌入到晶格中;充放电过程中发生的是Li+和Na+的共嵌入-脱出反应.  相似文献   
4.
本文通过在锂负极中熔入少量铝制备了一种含Al-Li合金(Al4Li9)的新型复合锂负极,可有效改善Garnet/金属锂界面润湿性,从而显著降低了界面阻抗. XRD研究结果表明这一复合锂负极由Al4Li9合金和金属锂两相复合而成. SEM研究表明,复合锂负极可以有效改善金属锂与Garnet电解质的界面接触,形成更为紧密的接触界面. 电化学测试表明,复合锂负极显著降低了金属锂与Garnet电解质的界面阻抗,界面阻抗由锂/Garnet电解质界面的740.6 Ω·cm 2降低到复合锂负极/Garnet电解质界面的75.0 Ω·cm 2. 使用复合锂负极制备的对称电池在50 μA·cm -2和100 μA·cm -2电流密度锂沉积-溶出过程中表现出较低的极化和良好的循环稳定性,在50 μA·cm -2电流密度下,可以稳定循环超过400小时.  相似文献   
5.
以过渡金属乙酸盐和氢氧化锂为原料, 应用共沉淀或流变相预处理高温烧结法优化并制备出LiNi0.4Co0.2Mn0.4O2正极材料. X射线衍射技术(XRD)及Rietveld结构精修、扫描电子显微技术(SEM)、综合热分析(TG-DSC)表征结果和电化学测试结果表明, 该材料具有单一层状结构, 颗粒大小均匀, 热稳定性好, 首次放电比容量高达208.7 mA·h/g(2.0-4.6V, 0.1 C), 电化学性能优异. 非原位(ex situ)XRD测定结果表明, 材料充至高电位下发生的不可逆相变造成了材料的循环容量衰减.  相似文献   
6.
寻求廉价、安全、环境友好并具有高比能量的可充锂电池正极材料成为目前锂离子电池材料研究的热点之一。聚阴离子型正极材料(如:橄榄石型LiFePO4材料)作为新一代锂离子电池正极材料引起了人们的广泛关注,给锂离子电池正极材料带来了安全、廉价、环境友好的希望,为动力及储能电池的发展提供一个很好的材料体系选择。硅酸盐材料(Li2MSiO4,M为金属元素)理论上可以允许可逆的嵌脱两个锂,因而具有较高的理论容量,  相似文献   
7.
寻求廉价、安全、环境友好并具有高比能量的可充锂电池正极材料成为目前锂离子电池材料研究的热点之一.聚阴离子型正极材料(如:橄榄石型LiFePO4材料)作为新一代锂离子电池正极材料引起了人们的广泛关注[1-3],给锂离子电池正极材料带来了安全、廉价、环境友好的q希望,为动力及储能电池的发展提供一个很好的材料体系选择.硅酸盐材料(Li2MSiO4,M为金属元素)理论上可以允许可逆的嵌脱两个锂,因而具有较高的理论容量,例如Li2MnSiO4理论比容量可达到333mAhg-1,Li2CoSiO4为325 mAhg-1.  相似文献   
8.
李雪  龚正良 《电化学》2020,26(3):338
锂硫电池由于具有高的理论比能量引起了广泛关注,然而传统液态锂硫电池由于多硫化物的“穿梭效应”以及安全问题而限制了其应用,全固态锂硫电池可显著提高电池安全性能并有望解决多硫化物的穿梭问题. 本文采用传统的溶液浇铸法制备了具有不同的[EO]/[Li+]的PEO-LiTFSI聚合物电解质,并将其应用于锂硫电池. 研究发现,虽然[EO]/[Li+] = 8的聚合物电解质具有更高的离子电导率,但是[EO]/[Li+] = 20的电解质与金属锂负极间的界面阻抗更低,界面稳定性更好. Li|PEO-LiTFSI([EO]/[Li+]=20)|Li对称电池在60 °C,电流密度为0.1 mA·cm-2时可稳定循环超过300 h,而Li|PEO-LiTFSI ([EO]/[Li+]=8)|Li对称电池循环75 h就出现了短路现象. 基于PEO-LiTFSI([EO]/[Li+]=20)电解质的锂硫电池首圈放电比容量为934 mAh·g-1,循环16圈后放电比容量为917 mAh·g-1以上. 而基于PEO-LiTFSI ([EO]/[Li+]=8)电解质的锂硫电池,由于与锂负极较低的界面稳定性不能够正常循环,首圈就出现了严重过充现象.  相似文献   
9.
高镍三元正极材料由于高容量和高工作电压被认为是下一代锂离子电池有力的候选者,然而循环稳定性和热稳定性不佳限制了其广泛应用. 镍钴锰/铝三元浓度梯度正极材料的梯度设计可以在保证高容量的同时兼具优良的循环稳定性,因而在过去十年中得到了广泛研究. 本文综述了锂离子电池镍钴锰/铝三元浓度梯度材料最新的研究进展,论文首先总结了梯度材料的不同合成方法,并阐述了核壳浓度梯度材料和全浓度梯度材料的研究方向. 其次,介绍了浓度梯度材料的结构表征手段并揭示性能改善的原因. 最后讨论了目前该材料产业化的难点,并提出了可能的解决方案.  相似文献   
10.
王东浩  晏鹤凤  龚正良 《电化学》2021,27(4):388-395
使用硫化物固体电解质的全固态锂硫电池由于多硫化物不溶于硫化物固体电解质及硫化物电解质不可燃的特性,得以完全避免穿梭效应并显著提高了电池的安全性能而被认为是极具潜力的下一代储能电池。如何建立并平衡复合正极中离子/电子导电网络且维持复合正极中较高活性物质含量对于全固态锂硫电池至关重要。本文以单质硫为活性物质研究了复合导电添加剂对全固态锂硫电池性能的影响,发现以乙炔黑(AB)为导电碳材料明显优于Super P和Ketjen Black;优化复合正极的组成,发现硫:乙炔黑:固体电解质的质量比为40:20:40时,全固态锂硫电池在室温和60℃下均具有良好的电化学性能。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号