首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   3篇
  国内免费   9篇
化学   14篇
力学   7篇
综合类   2篇
数学   4篇
物理学   5篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   2篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1994年   1篇
  1991年   2篇
排序方式: 共有32条查询结果,搜索用时 171 毫秒
1.
宋辉  徐献芝  李芬 《物理化学学报》2013,29(9):1961-1974
锌-空气电池是一种高能量的电池体系.实验表明, 在大功率工作条件下, 锌电极的材料利用率随电流密度的增加而急剧下降. 为探索其在大功率工作条件下的放电机理, 本文针对这一过程建立了一维数学模型, 通过数值求解模拟多个物理量如离子浓度、传递电流密度、电极孔隙度、固体氧化锌等在电极内部的分布变化情况, 在此基础上分析电极的性能. 数值结果分析表明, 固体氧化锌对电极内质量传输过程的限制是导致电极失效的根本原因. 其析出时间及在电极内部的集中分布位置对电极性能有显著影响; 而仅当其体积分数超过30%-35%的范围后才开始显著限制传质过程. 讨论了电极的优化措施, 模拟表明更高的溶液电导率,更大的电极孔隙度有利于增加大功率工作条件下电极的材料利用率. 但最重要的是保持电极内部氢氧根离子的浓度在一个较高的值,对于封闭式电极可以通过补液实现, 理想情况为设计一个电解液循环式的锌电极.  相似文献   
2.
[1,2,4]三唑并[3,4-b][1,3,4]噻二嗪作为极具前景的活性基团,在抗菌、抗肿瘤等方面具有多种药理活性,在药物和化学领域受到了广泛的关注。本文以含三唑并噻二嗪结构化合物的合成及其在抗肿瘤、抗菌等方面的生物活性为依据,对近几年国内外关于[1,2,4]三唑并[3,4-b][1,3,4]噻二嗪类化合物的研究进行分析总结,以期为后续该类新型抗肿瘤化合物的设计合成提供参考。  相似文献   
3.
为提高有机电致发光器件(OLEDs)的阴极电子注入效率,我们设计了新型的阴极杂化修饰层,其结构为Bphen∶LiF/Al/MoO3,将其应用到器件ITO/NPB/Alq3/Al中,参考器件的电子注入层选用传统材料LiF。实验研究表明,与传统的阴极修饰层LiF相比,基于这种杂化结构的阴极修饰层非常有效。测试了器件的电致发光光谱(EL谱),其峰值位于534 nm,发光来自于Alq3,实验中我们可以观察到明亮的绿色发光。将其与传统参考器件的EL谱进行对比,在电流密度40 mA·cm-2下,两个器件的电致发光光谱是一致的。在0~100 mA·cm-2范围内,对器件的EL谱进行了测试。实验结果表明,随着电流密度的增加,器件的发光增强,但是EL谱的形状和谱峰的位置是固定不变的。与参考器件对比,基于杂化修饰层的器件的发光性能更好。研究表明,杂化修饰层的最佳参数为Bphen∶LiF(5 nm; 6%)/Al(1 nm)/MoO3(5 nm),在测试范围内,器件的最大电流效率和最大功率效率分别为4.28 cd·A-1和2.19 lm·W-1,相比参考器件提高了25.5%和23.7%。器件的电流密度-电压特性曲线表明阴极杂化修饰层可以增强电子的注入,使器件中的载流子更加平衡,从而提高了器件的发光性能。从两个角度对器件效率的增强进行了理论方面的论证。一方面利用阴极杂化修饰层的作用机制来解释。在HML中,LiF能填充Bphen的电子陷阱,增强电流的注入,同时HML也能限制空穴的传输,减小空穴电流。另一方面从电荷平衡因子的角度,HML增强了电子的注入,使得器件的电荷平衡因子增大,空穴和电子的平衡性更好。实验研究表明,阴极杂化修饰层很好地增强了器件的效率。  相似文献   
4.
锌空电池气体扩散电极在存放和放电过程中,电解液会在毛细力的作用下不断浸入电极。电解液在气体扩散电极中的浸入量与分布情况决定了气体扩散电极中的化学反应活化区,从而影响放电性能。通过实验测量了气体扩散电极开始浸液的4天内浸液量与放电性能的关系,并借助拓扑网络数值模拟电解液浸入多孔介质的过程帮助理解该实验现象。结果表明,随着放电过程的进行,浸液量和分布情况不断变化;气体扩散电极放电性能变化主要分为3个阶段:浸液饱和度为39.4%时放电性能最佳;浸液开始2~24小时进行迅速,浸液饱和度达到81%,放电性能小幅下降;24小时之后浸液增速大幅减缓,放电功率随浸液量增加大幅下降。  相似文献   
5.
This paper utilizes a flow equation with a sink item that describes the characteristics of pressure-time chart when the pressure is higher than the maximum condensate pressure.We have established a sink item to show the influence of accumulation of condensate liquid according to Duhamet Principle of Superposition,and introduced two coefficients for it:condensing strength R_D and condensing relaxation timeλ_D.This paper gives the principle and the quantitative expression of the well pressure influenced by condensate function in the flow equation.An analytical solution for an infinite system is obtained(constant rate).These results can be used to analyse the unsteady flow test of constant production.  相似文献   
6.
多孔电极三相界面形态的研究   总被引:2,自引:0,他引:2  
研究了多孔气体电极在电池反应中形成的三相界面的形态及其变化规律。传统的电极多采用部分浸没的使用方式,不利于观察。笔者通过改变传统的电极安装方式,将电极在纵向的距离加大,可以任意调节电极纵向高度,有利于观察三相界面的形成形态。通过锌空气电池实验,总结了三相界面形态的形成以及随着反应时间的变化规律,并对三相界面形态的变化使电极内电解液的电导发生变化进而影响电池内电阻进行了理论分析,通过对比实验给出多孔电极润湿性和孔隙结构对三相界面形态的影响。  相似文献   
7.
Using the principle of diffusion-limited aggregation(DLA),a new model is introduced to simulate the displacement of one fluid by another in porous media.The results agree with experiments.apparently they do not leave out film-flow phenomena.Simultaneously,we also present a new numerical method to treat our results by the lattice Boltzmann method(LBM),All these will be helpful for analysing similar subjects.  相似文献   
8.
多孔介质的流变模型研究   总被引:18,自引:0,他引:18  
多孔介质在应力作用下具有弹性变形和黏性变形两种完全不同的变形机制,多孔介质的弹性变形是由介质的本体有效力所致,而黏性变表则是由介质的结构有效应力所致。多孔介质的总变形为弹性变形和黏性变形的叠加,计算多孔介质总应变量的流变模型必须同时采用本体有效应力和结构有效应力(双重有效应力),而传统的流变模型仅采用Terzaghi有效应力是不妥当的,它无法正确描述多孔的应变行为,采用了双重有效应力之后的流变模型,通过调节介质特性参数,可以拟合介质的实际应变行为,并且把多孔介质与普通固体联系了起来。  相似文献   
9.
ITER装置中IWS装配仿真设计及研究   总被引:1,自引:1,他引:0  
内中子屏蔽层(IWS-In Wall Shielding)是国际热核聚变实验装置(ITER)中核心装置-真空室(VVVacuum Vessel)的重要组成部分.由于真空室结构复杂,各项性能要求高,根据ITER国际组织要求,其所有结构必须结构设计与装配模拟研究同步进行,通过对其装配过程的动态模拟,确定其各部件的装配关系,...  相似文献   
10.
对气体扩散电极三相反应区域的基本单元简化得到了液滴电极模型,并建立了液滴电极的数学模型.对液滴电极数学模型求解,得出液滴电极在大电流输出工作条件下输出电流与三相反应交界线周长成正比,具体关系为I=K(θ_0)*L*C_e.其中I为电极电流强度,θ_0为接触角,C_e为气液接触面上氧气浓度,L为固液接触面周长.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号