首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   1篇
  国内免费   1篇
化学   3篇
物理学   1篇
  2022年   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
碳纤维是非常重要的增强材料,在军工以及高档民用产品中用途广泛。因为聚丙烯腈原丝的结构会"遗传"到最终的碳纤维结构中,因此原丝结构对碳纤维的性能影响很大。原丝的结构是纺丝液在凝固浴中的相分离和凝胶化两个过程决定的,因此研究这两个过程的规律并进一步控制它们的进程,达到调控原丝结构的目的是非常重要的。本文介绍了本课题组利用流变学及光学的方法研究PAN/DMSO/H2O体系凝胶化及相分离行为的最新研究成果,主要探索了PAN/DMSO/H2O浓溶液中凝胶化行为,发现了二次自相似结构的形成并对其机理进行了分析,并对PAN/DMSO/H2O亚浓溶液中凝胶化与相分离的耦合过程进行了研究,分析了最终凝胶的结构特性及Winter-Chambon模型在此过程中的适用性。最后,对PAN/DMSO/H2O体系凝胶化及相分离行为的下一步研究进行了展望。  相似文献   
2.
热塑性聚氨酯(TPU)弹性体因其良好的可加工性、机械性能和生物安全性而被广泛应用于生物医学领域. 绝大部分TPU都由大分子二元醇软段以及异氰酸酯和小分子扩链剂形成的硬段组成, 这两者分别提供基体的弹性与链网络的框架刚性. 小分子扩链剂二元醇/胺和二异氰酸酯的结构设计是构建功能化TPU的主要途径. 研究者根据特定临床应用场景和使用需求, 设计和制备相应的功能化单体, 并开发出相应的医用TPU. 本综述首先介绍了大分子二元醇、二异氰酸酯以及扩链剂的种类以及各自的特点, 对其特有的微相分离结构做了介绍, 并明晰了化学/物理结构与最终性能的关系. 随后, 综述了国内外TPU在生物医学领域的研究进展和应用, 重点阐述了医用TPU在抗菌、抗凝血、耐水解耐氧化、自愈性以及可降解等方面的发展情况. 最后, 通过总结和分析医用TPU及其器械评价的相关标准, 提出了产业化应用的关键问题, 并展望了医用TPU未来的发展方向.  相似文献   
3.
We perform comprehensive density functional theory calculations of strain effect on electronic structure of black phosphorus(BP) and on BP nanoribbons. Both uniaxial and biaxial strain are applied, and the dramatic change of BP's band structure is observed. Under 0-8% uniaxial strain, the band gap can be modulated in the range of 0.55-1.06 eV, and a direct-indirect band gap transition causes strain over 4% in the y direction. Under 0-8% biaxial strain, the band gap can be modulated in the range of 0.35-1.09 eV, and the band gap maintains directly.Applying strain to BP nanoribbon, the band gap value reduces or enlarges markedly either zigzag nanoribbon or armchair nanoribbon. Analyzing the orbital composition and using a tight-binding model we ascribe this band gap behavior to the competition between effects of different bond lengths on band gap. These results would enhance our understanding on strain effects on properties of BP and phosphorene nanoribbon.  相似文献   
4.
冯玉红  张若愚 《高分子科学》2014,32(8):1099-1110
Polylactide (PLA) was successfully toughened by blending with bio-based poly(ester)urethane (TPU) elastomers which contained bio-based polyester soft segments synthesized from biomass diols and diacids. The miscibility, mechanical properties, phase morphology and toughening mechanism of the blend were investigated. Both DSC and DMTA results manifested that the addition of TPU elastomer not only accelerated the crystallization rate, but also increased the final degree of crystallinity, which proved that TPU has limited miscibility with PLA and has functioned as a plasticizer. All the blend samples showed distinct phase separation phenomenon with sea-island structure under SEM observation and the rubber particle size in the PLA matrix increased with the increased contents of TPU. The mechanical property variation of PLA/TPU blends could be quantitatively explained by Wu's model. With the variation of TPU, a brittle-ductile transition has been observed for the TPU/PLA blends. When these blends were under tensile stress conditions, the TPU particles could be debonded from the PLA matrix and the blends showed a high ability to induce large area plastic deformation before break, which was important for the dissipation of the breaking energy. Such mechanism was demonstrated by tensile tests and scanning electron microcopy (SEM) observations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号