首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  国内免费   2篇
化学   4篇
  2021年   1篇
  2020年   1篇
  2004年   1篇
  2003年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
扫描探针纳米加工技术的现状与发展趋势   总被引:4,自引:0,他引:4  
介绍了扫描探针纳米加工技术的基本原理、应用前景和最新进展 ,并讨论了该技术的发展趋势  相似文献   
2.
光电化学分解水可将太阳能转换为绿色的氢能,为目前的能源危机和环境问题提供了一种理想的解决方案.在分解水反应中,涉及四空穴过程的产氧半反应是制约性能的关键步骤,往往需要在半导体表面沉积电催化剂以加速产氧反应动力学.因此,全面理解电催化剂在光电化学分解水体系中的作用至关重要.在目前的产氧电催化剂中,过渡金属羟基氧化物电催化剂(MOOH,M=Fe,Co,Ni)因其环保、廉价、高效以及稳定的特性,已被广泛用于半导体光阳极分解水器件中.而且,MOOH可用简单的电沉积方法沉积在光电极表面,易于大面积制备.然而,电沉积法制备的MOOH具有复杂的结构,对其作用机制的全面理解更加困难.因此,本文以电沉积MOOH修饰的硅基光阳极(n+p-Si/SiOx/Fe/FeOx/MOOH)作为模型,研究了不同电催化剂对硅光阳极光电化学产氧性能的影响.实验发现电催化剂的界面优化在电催化剂修饰的光电极中发挥着重要作用,这是因为优化的界面可以提升界面电荷传输,提供更多的催化反应活性位点以及更高的本征催化活性,从而更有利于光解水性能的提升.该项研究揭示了电催化剂在光解水器件中的作用,并为今后高效光解水器件的设计提供了一定指导.首先在多晶n+p-Si基底上热蒸镀了一层30 nm的金属Fe膜,并通过电化学活化将Fe膜表面转换为FeOx得到Fe/FeOx(记作aFe)界面层,然后利用电沉积方法制备MOOH表面修饰层,最终得到n+p-Si/SiOx/aFe:MOOH光阳极.X射线光电子能谱、拉曼光谱以及扫描电子显微镜表面元素成像的表征结果均证实电极表面由于界面层金属Fe元素的掺杂而形成了Fe1-xNixOOH.在模拟太阳光下用于光解水产氧时,n+p-Si/SiOx/aFe:NiOOH电极的起始电位为~1.01 VRHE(相对于可逆氢电极的电势),在1.23 VRHE下的光电流为38.82 mA cm-2,显著优于n+p-Si/SiOx/aFe、n+p-Si/SiOx/aFe:FeOOH以及n+p-Si/SiOx/aFe:CoOOH三个对比样品,且其稳定性达到75 h.另外,我们发现n+p-Si/SiOx/aFe:MOOH电极的光电化学产氧性能均显著高于n+p-Si/SiOx/aFe电极,且p++-Si/SiOx/aFe:MOOH的电催化产氧性能也高于p++-Si/SiOx/MOOH,不仅证明了aFe界面层对Si与MOOH层之间的界面接触作用的有效调控,而且表明双电催化剂体系(aFe:MOOH)的电催化产氧活性高于单电催化剂(MOOH).热力学分析表明,n+p-Si/SiOx/aFe:MOOH光阳极的光电压大小与其光解水产氧性能并不一致,从而排除了热力学因素对性能的关键影响.进一步从塔菲尔斜率、电化学活性表面积和电化学阻抗谱对各电极的动力学进行了分析,证明了动力学因素在上述光阳极产氧性能中的主导作用.同时发现,由于aFe:NiOOH双电催化剂具有更高的本征电催化产氧性能,提供了更多的表面活性位点以及更有效地促进了光生载流子的传输,对动力学的提升效果更显著,从而使n+p-Si/SiOx/aFe:NiOOH光阳极表现出最高的光解水产氧性能.  相似文献   
3.
低驱动电压下有机电致发光器件(0ELD)中的界面结构对器件效率和寿命有重要影响。本文简要介绍近年来以多种分析技术和方法研究0ELD界面分子结构、能带结构、激发态特性及反应等获得的主要结果,并提出了目前该领域存在的一些问题及发展趋势。  相似文献   
4.
能够大规模同时提升电极的催化效率和稳定性对光电化学分解水系统的开发具有重要意义.硅是一种地球储量丰富且成熟的工业材料,由于其合适的带隙(1.1 eV)和优异的导电性,已被广泛用于光电化学制氢反应.然而,缓慢的表面催化反应和在电解液中的不稳定性限制了其在太阳能制氢中的实际应用.III-IV族半导体材料也具有较高的载流子传输特性且被广泛用于光电器件.其中,GaP的直接带隙和间接带隙分别为2.78和2.26 eV,可与硅组成串联型光电极用于光电化学分解水.然而,GaP的光腐蚀电位位于禁带中,很容易在光电催化过程中发生光腐蚀而导致性能大幅下降.本文报道了一种新型的GaP/GaPN核/壳纳米线修饰的p型硅(p-Si)串联型光阴极,同未修饰的p-Si相比,其光电化学制氢性能更高.这可归因于以下几点:(1)p-Si和GaP纳米线之间形成的p-n结促进了电荷分离;(2)GaPN相对于GaP具有更低的导带边位置,进一步促进了光生电子向电极表面的转移;(3)纳米线结构既缩短了光生载流子的收集距离,又增加了比表面积,从而加快了表面反应动力学.此外,在GaP中引入氮元素还提高了体系的光吸收和稳定性.我们所提出的高效、简便的改进策略可应用于其他的太阳能转换体系.利用简单的化学气相沉积法制备GaP/GaPN核/壳纳米线修饰的p-Si光阴极.首先在p-Si衬底上利用Au纳米颗粒作为催化剂生长GaP纳米线;然后,去除Au催化剂,并在氨气中退火便形成了GaP/GaPN核壳纳米线.高分辨透射电子显微镜,拉曼光谱和X射线光电子谱的表征结果均证实了氨气退火使得GaP纳米线表面形成了GaPN的薄壳层,同时证明了GaP/GaPN核壳纳米线具有可调的核壳结构.在模拟太阳光下作为光阴极用于光解水制氢反应时,GaP/GaPN核壳纳米线修饰的p-Si光阴极的起始电位为~0.14 V,而未修饰的p-Si电极的起始电位大约在?0.77 V.而且,GaP/GaPN核/壳纳米线修饰的p-Si光阴极比未修饰的p-Si光阴极具有更高的光电流密度,在水的还原电位下,其光电流密度为?0.3 mA cm^-2,且饱和光电流密度在?0.76 V时达到了?8.8 mA cm^-2.此外,GaP/GaPN核/壳纳米线修饰的p-Si光阴极的光电化学活性在10 h内没有发生明显下降.由此可见GaP/GaPN核/壳纳米线可以规模化有效地提升Si光电极的催化效率和稳定性.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号