首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41118篇
  免费   2696篇
  国内免费   3652篇
化学   31502篇
晶体学   144篇
力学   461篇
综合类   639篇
数学   6537篇
物理学   8183篇
  2023年   552篇
  2022年   434篇
  2021年   1313篇
  2020年   987篇
  2019年   1106篇
  2018年   772篇
  2017年   987篇
  2016年   1208篇
  2015年   1226篇
  2014年   1497篇
  2013年   2828篇
  2012年   1944篇
  2011年   2171篇
  2010年   2075篇
  2009年   2568篇
  2008年   2773篇
  2007年   3015篇
  2006年   2388篇
  2005年   1734篇
  2004年   1482篇
  2003年   1332篇
  2002年   1306篇
  2001年   1189篇
  2000年   778篇
  1999年   617篇
  1998年   626篇
  1997年   451篇
  1996年   538篇
  1995年   548篇
  1994年   590篇
  1993年   625篇
  1992年   576篇
  1991年   355篇
  1990年   296篇
  1989年   234篇
  1988年   258篇
  1987年   211篇
  1986年   211篇
  1985年   320篇
  1984年   232篇
  1983年   147篇
  1982年   294篇
  1981年   470篇
  1980年   426篇
  1979年   466篇
  1978年   371篇
  1977年   280篇
  1976年   238篇
  1974年   76篇
  1973年   150篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
1.
In this article, a way to employ the diffusion approximation to model interplay between TCP and UDP flows is presented. In order to control traffic congestion, an environment of IP routers applying AQM (Active Queue Management) algorithms has been introduced. Furthermore, the impact of the fractional controller PIγ and its parameters on the transport protocols is investigated. The controller has been elaborated in accordance with the control theory. The TCP and UDP flows are transmitted simultaneously and are mutually independent. Only the TCP is controlled by the AQM algorithm. Our diffusion model allows a single TCP or UDP flow to start or end at any time, which distinguishes it from those previously described in the literature.  相似文献   
2.
《中国物理 B》2021,30(5):56501-056501
Thermal expansion control is always an obstructive factor and challenging in high precision engineering field. Here,the negative thermal expansion of Nb F_3 and Nb OF_2 was predicted by first-principles calculation with density functional theory and the quasi-harmonic approximation(QHA). We studied the total charge density, thermal vibration, and lattice dynamic to investigate the thermal expansion mechanism. We found that the presence of O induced the relatively strong covalent bond in Nb OF_2, thus weakening the transverse vibration of F and O in Nb OF_2, compared with the case of Nb F_3.In this study, we proposed a way to tailor negative thermal expansion of metal fluorides by introducing the oxygen atoms.The present work not only predicts two NTE compounds, but also provides an insight on thermal expansion control by designing chemical bond type.  相似文献   
3.
We propose a conjecture on the relative twist formula of l-adic sheaves, which can be viewed as a generalization of Kato—Saito's conjecture. We verify this conjecture under some transversal assumptions. We also define a relative cohomological characteristic class and prove that its formation is compatible with proper push-forward. A conjectural relation is also given between the relative twist formula and the relative cohomological characteristic class.  相似文献   
4.
Hydrodynamic cavitation experiments in microfluidic systems have been performed with an aqueous solution of luminol as the working fluid. In order to identify where and how much reactive radical species are formed by the violent bubble collapse, the resulting chemiluminescent oxidation reaction of luminol was scrutinized downstream of a constriction in the microchannel. An original method was developed in order to map the intensity of chemiluminescence emitted from the micro-flow, allowing us to localize the region where radicals are produced. Time averaged void fraction measurements performed by laser induced fluorescence experiments were also used to determine the cavitation cloud position. The combination void fraction and chemiluminescence two-dimensional mapping demonstrated that the maximum chemiluminescent intensity area was found just downstream of the cavitation clouds. Furthermore, the radical yield can be obtained with our single photon counting technique. The maximum radical production rates of 1.2*107 OH/s and radical production per processed liquid volume of 2.15*1010 HO/l were observed. The proposed technique allows for two-dimensional characterisation of radical production in the microfluidic flow and could be a quick, non-intrusive way to optimise hydrodynamic cavitation reactor design and operating parameters, leading to enhancements in wastewater treatments and other process intensifications.  相似文献   
5.
Activators regenerated by electron transfer (ARGET) atom transfer radical polymerization (ATRP)-based aqueous miniemulsion polymerization where the polymerization takes place in the stabilized monomer droplets is described. In this work, we compared styrene, n-butyl methacrylate (nBMA) and tert-butyl methacrylate (tBMA) and investigated the influence of their hydrophobicity on dispersity, molecular weight and particle stability based their partition coefficients (logP) (2.67, 2.23, and 1.86, respectively). Tetrabutylammonium bromide (TBAB) was used as a phase transfer agent for the controlled delivery of Cu2+-Br/tris(2-pyridylmethyl)amine (TPMA), a hydrophilic catalyst, into monomer droplets of varying hydrophobicity. The resulting dispersity and particle stability of each polymer is a function of its logP value, with the most hydrophobic monomer (styrene) displaying the narrowest dispersity and most control (Đ < 1.3), and the most hydrophilic polymer poly(tert-butyl methacrylate) (PtBMA) having reduced emulsion stability, determined by the observation of aggregate formation. Selected polymerization parameters, including effects of total ascorbic acid feed concentration and the monomer concentration and their effects on dispersity are reported. The controlled polymerizations of hydrophilic monomers using ARGET-ATRP in miniemulsion conditions and understanding the effect of monomer hydrophilicity on the emulsion stability will broaden the use of ARGET-ATRP in emulsion polymerization for the synthesis of polymer-grafted nanoparticles with hydrophilic corona.  相似文献   
6.
The commonly used multi-center initiation methods always lead to the formation of quantities of homopolymer in the surface tailoring based on reverse atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain-transfer (RAFT) polymerization. In this study, a monocenter redox pair constructed of silica bearing tert-butyl hydroperoxide groups and ascorbic acid (SiO2-TBHP/AsAc) was applied to substitute the commonly used initiation method of R-supported RAFT grafting polymerization. All the propagating radicals were restricted on the surface of solid particles during the whole procedure theoretically, resulting in a higher grafting efficiency of 95.1% combined with the “controllable” feature at 10 h. This redox pair was also used to initiate the reverse ATRP in miniemulsion successfully with a grafting efficiency of 86.3% at 10 h. The grafting efficiency obtained under this monocenter initiation method was significantly higher than that of the frequently reported surface modification by reverse ATRP and RAFT polymerization. In addition, the high-efficient surface tailoring was traced and confirmed by nuclear magnetic resonance, Fourier transform infrared, X-ray photoelectron spectroscopy, thermogravimetric analysis, transmission electron microscopy, and other analysis tests. The advantage of this monocenter redox pair will open a new avenue for the potential “high-efficient” surface tailoring of various materials.  相似文献   
7.
Continuous administration of most chemotherapeutic drugs can induce different types of side effects. There has been growing interest in exploring an alternative approach to synthesizing compounds that are most effective and have fewer side effects. We synthesized 29H,31H-Phthalocyanine, and Chloro (29H,31H- phthalocyaninato) aluminum at low temperatures using lithium in the present study with diisopropylamide as the nucleophile. The physical characteristics of 29H,31H-Phthalocyanine, and Chloro (29H,31H- phthalocyaninato) aluminum were confirmed by FT-IR method, XRD, SEM, and the impact of these compounds on human colorectal carcinoma (HCT-116) and human cervical cells (HeLa) was examined. Treatment with 29H,31H-Phthalocyanine significantly decreased cancer cell growth and proliferation, as determined by MTT and DAPI staining analysis. In contrast, Chloro (29H,31H- phthalocyaninato) aluminum treatment did not show any inhibitory action on colon or cervical cancer cells. We also calculated the inhibitory concentration (IC50) of 29H,31H-Phthalocyanine, which was 30 µg/ml (HCT-116) and 33 µg/ml (HeLa cells). The antibacterial effectiveness of 29H,31H-Phthalocyanine, and chloro (29H,31H- phthalocyaninato) aluminum was studied using Enterococcus faecalis (E. faecalis). The CFU (colony frequency unit) assay confirmed significant activity against the test bacterium after treatment with 29H,31H-Phthalocyanine. However, no activity was seen upon treatment with chloro (29H,31H- phthalocyaninato) aluminum against E. faecalis.  相似文献   
8.
Acridone as a new kind of visible light photocatalyst has been developed to catalyze metal free atom transfer radical polymerization (ATRP). The photocatalyst possess low excited state potential as can undergo an oxidative quenching pathway to initiate ATRP of vinyl monomers. Kinetic study and light on/off reaction demonstrate the “living”/controlled nature of the polymerization by light. Block copolymers can be achieved by using PMMA as macroinitiator to reinitiate polymerization of other vinyl monomers, which shows highly preserved Br chain-end functionality in the synthesized polymers. Moreover, the polymerization can be conducted under air atmosphere as most photocatalysts need anaerobic condition, which may give inspiration of further application of this kind of photocatalyst.  相似文献   
9.
Pressure oxidation leaching behavior of chalcopyrite in sulfuric acid solution from 110 °C to 150 °C were investigated by in-situ electrochemical methods. Leaching experiments under saturated vapor pressure conditions were used to simulate the anoxic environment that may be encountered in industrial applications. Scanning electron microscope and X-ray photoelectron spectroscopy were used to characterize the morphology and the chemical status of chalcopyrite surface. Results show that the copper extraction was increased with the increase of leaching temperature. Under the optimal leaching conditions under saturated vapor pressure, the copper and iron extraction are 8.3% and 29.8%, respectively. When the temperature increased from 110 °C to 150 °C, the self-corrosion potential and electrochemical reaction resistance firstly increased and then decreased. In contrast, the resistance of the passive film was always increased with the increase of temperature. The electrochemical study results indicated that the increase in temperature affected the oxidation of chalcopyrite by altering the kinetics of the cathodic reaction and the anodic passivation. Both the self-corrosion current density (icorr) and rate constant were affected by the reduction of Fe(III). The XPS results show that elemental sulfur and H3O(Fe3(SO4)2(OH)6) were the main leaching solid products. The formation of H3O(Fe3(SO4)2(OH)6) not only caused a decrease in cathodic reaction kinetics, but also increased the resistance of mass transfer process. Due to the faster release of iron, copper-rich sulphides were formed, which mixed with the elemental sulfur and/or H3O(Fe3(SO4)2(OH)6) led to coverage of the chalcopyrite surface.  相似文献   
10.
The survival of living beings, including humanity, depends on a continuous supply of clean water. However, due to the development of industry, agriculture, and population growth, an increasing number of wastewaters is discarded, and the negative effects of such actions are clear. The first step in solving this situation is the collection and monitoring of pollutants in water bodies to subsequently facilitate their treatment. Nonetheless, traditional sensing techniques are typically laboratory-based, leading to potential diminishment in analysis quality. In this paper, the most recent developments in micro- and nano-electrochemical devices for pollutant detection in wastewater are reviewed. The devices reviewed are based on a variety of electrodes and the sensing of three different categories of pollutants: nutrients and phenolic compounds, heavy metals, and organic matter. From these electrodes, Cu, Co, and Bi showed promise as versatile materials to detect a grand variety of contaminants. Also, the most commonly used material is glassy carbon, present in the detection of all reviewed analytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号